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The world is uncertain. 
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Some levels of risk are unacceptable. 



Impact of Uncertainty on Dynamic Systems 
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Uncertainty in  
wind speed causes…	


Uncertainty in  
wind power	


Uncertainty in  
vehicle position	




Motivation: High Penetration of Renewables 

Electrical grid must prepare for high penetration of 
renewables. 

Challenge: Wind and solar are undispatchable, 
intermittent, and unpredictable. 
 



Sustainable Homes 

•  Goal: Optimally control HVAC, window opacity, washer/dryer, e-car. 
•  Objective: Minimize energy cost. 
•  Uncertainty: Solar input, outside temp, energy supply, occupancy. 
•  Risk: Resident goals not satisfied; occupant uncomfortable. 
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Connected Sustainable Homes Testbed 
Federico Casalegno (PI), MIT Mobile Experience Lab 



(Sub)Urban Scale Sustainability 

•  Heterogeneous 
connected homes with 
different energy 
sources. 

•  Symmetric energy 
exchange between 
houses. 

•  Challenge:  
–  How to distribute 

energy optimally,  
–  while limiting the risk of 

an energy shortage, 
–  without centralized 

control. 

Bottom-Up Grid Project,  
MIT-EI-Tata. 



Vehicle Electrification and Autonomy 

•  Barrier to adoption due to range anxiety. 

Tesla Image. 
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Image	
  courtesy	
  of	
  Boeing	
  Research	
  &	
  Technology	
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Vehicle Electrification and Autonomy 



Environmental Observing Systems 
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Environmental Observing Systems 

•  Barriers to high science return include operational 
cost and mission risk. 
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Joint collaboration with  
Woodshole Deep Submergence Lab and  
The Monterrey Bay Aquarium Research Institute 



Facilitating Sustainability 
Requires Managing Risk 
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Risk-bounded Planning 
(Goal-directed Model-Predictive Control) 
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Stochastic Optimization Problems 
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Risk Allocation Algorithms 
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Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 
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Model-Predictive Control 

•  Plan control trajectory = 
constraint optimization  

Start 

Goal 

Pp
ts

pJ
p

∈

..

)(min

p: path 
P: Set of feasible paths 
J: cost function 
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Finite Horizon Model-Predictive Control 
•  Formulate as Linear (LP), Mixed Integer (MILP) or Mixed-Logic (MLLP) Program. 
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Example Constraints 

•  2-D Omni-dimensional Holonomic Vehicle in a room 
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Example Constraints 

•  2-D Omni-dimensional Holonomic Vehicle in a room 

gHx ≤

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∧
=

or

g
y
x

h n
T
n

n

4

1

Spatial constraints:  
Vehicle must be in the room 

Start 

Goal 

Initial velocity 

11 g
y
x

h T =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

22 g
y
x

h T =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

33 g
y
x

h T =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛



21 

Example Cost Function 

•  What cost function should we use? 
–  Example: minimum control effort 

–  Problem: This is not a linear function!!  
–  There are tricks. 
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Formulation of Receding Horizon Control 
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Receding Horizon Control 

•  Patchwork. 

Start 

Goal 

First N steps 
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Receding Horizon Control 

•  Patchwork. 

Start 

Goal 

First N steps 

Next N steps 
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More on Receding Horizon 

•  10 seconds later….  

Start 

Goal 

Current position (t = 10) 

Plan  

Predicted position at t = 20 

t = 10 
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More on Receding Horizon 

•  World uncertain. 

Start 

Goal 

Actual path 

t = 20 

Predicted position at t = 20 

Plan  

Actual position at t = 20 
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Execution Horizon < Planning Horizon 

•  3 seconds later…. 

Start 

Goal 

Current position (t = 10) 

Plan  

Predicted position at t = 20 

t = 10 
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Execution Horizon < Planning Horizon 

•  3 seconds later….  

•  Position a little bit off 
from the plan. 

Start 

Goal 

Current position (t = 13) 

Plan  

Predicted position at t = 20 

t = 13 
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Execution Horizon < Planning Horizon 

•  Abandon the plan after 
t = 13. 

Start 

Goal 

Current position (t = 13) 

t = 13 
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Execution Horizon < Planning Horizon 

•  Abandon the plan after 
t = 13. 

•  Replan for another 
planning horizon. 

•  Repeat. 

Start 

Goal 

Current position (t = 13) 

Predicted position at t = 23 

t = 16 



Test bed: Connected Sustainable Home 
F. Casalegno & B. Mitchell, MIT Mobile Experience Lab 

•  Goal: Optimally control HVAC, window opacity, washer and dryer, e-car. 
•  Objective: Minimize energy cost. 
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Goal-directed Model-Predictive Control:  
Resident Goals 

32 

“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Cook dinner within at least an hour of arriving 
home, and at least 3 hours before bed. Also, dry my clothes 
before morning. I need to use my car to drive to and from 

work, so make sure it is fully charged by morning. It’s 
acceptable if my clothes aren’t ready by morning or if the 
house is a couple degrees too cold, but my car absolutely 

needs to be ready to use before I leave for work.” 



Goal-directed Model-Predictive Control:  
Resident Goals 
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“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



Goal-directed Model-Predictive Control:  
Resident Goals 
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“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 

Goal-directed Model-Predictive Control:  
Resident Goals 
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Goal-directed Model-Predictive Control:  
Resident Goals 
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“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



Flexibility Available to Control 

•  When activities are performed. 

•  When to charge/discharge batteries. 

•  Which activities to shed (when supply is low). 
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Encoding: Qualitative State Plan (QSP) 

38 

Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

“Maintain room temperature after 
waking up until I go to work. No 

temperature constraints while I’m at 
work, but when I get home, maintain 
room temperature until I go to sleep. 

Maintain a comfortable sleeping 
temperature while I sleep.” 

[1-3 hour] [6-8 hours] [7-8 hours] [7-9 hours] 

Sulu [Leaute & Williams, AAAI05] 



Encoding: Qualitative State Plan (QSP) 
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Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

“Maintain room temperature after 
waking up until I go to work. No 

temperature constraints while I’m at 
work, but when I get home, maintain 
room temperature until I go to sleep. 

Maintain a comfortable sleeping 
temperature while I sleep.” 

…
…

[1-3 hour] [6-8 hours] [7-8 hours] [7-9 hours] 

Sulu [Leaute & Williams, AAAI05] 
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Encode the Qualitative State Plan and Dynamics 
within a Model-Predictive Controller 
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Sulu [Leaute & Williams, AAAI05] 
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Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

(p)Sulu Results 



Energy Savings: Optimal Control 

•  42.8% savings in winter over PID. 
•  15.3%, 16.8%, and 4.4% in  

spring, summer, autumn. 



Additional Savings Due to Flexibility 

•  10.4%, 1.6%, 1.6%, and 0.7% in the  
winter, spring, summer, and autumn. 
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Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 



The Danger of Ignoring Uncertainty 
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Depth Navigation for Bathymetric Mapping – Jan. 23rd, 2008 

Problem: Managing Risk within Mission-Guidelines 



>$1M 
 



Issue:	
  Frequent	
  Mission	
  Aborts	
  

	
  

Minimum Altitude 

Planned trajectory 

Actual trajectory 

Attitude is less than the minimum 
altitude 

Mission abort 
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Robust Model Predictive Control 

•  Receding horizon planners react to uncertainty  
after something goes wrong. 

•  Can’t we take precautionary actions  
before something goes wrong? 

• Ali A. Jalali and Vahid Nadimi, “A Survey on Robust Model Predictive 
Control from 1999-2006.” 
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No Fly Zone	


No Fly Zone	


•  Predicted position has bounded uncertainty. 
•  Problem: Find a control sequence that satisfies the 

constraints for all realizations of uncertainty. 	


t =1 t =2 
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99.9% 
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90% 
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t =1 t =2 
•  Predicted position has probabilistic uncertainty. 
•  Problem: Find a control sequence that satisfies 

the constraints within a probability bound 
(Chance Constraint).	
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Incorporating Uncertainty 

•  Deterministic discrete-time  
LTI model 

•  Additive uncertainty 

•  Multiplicative uncertainty 
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What to Minimize? (Bounded Uncertainty) 

•  Minimize the worst case cost 

•  Minimize nominal cost 
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What to Minimize? (Stochastic Uncertainty) 

•  Utilitarian approach 

•  Chance constrained optimization 

)()(min UU,X
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Chanced Constrained,  
Robust Path Planning 

–  “Plan optimal path to goal such that p(failure) ≤ Δ.” 

p(failure) ≤ Δ 

Expected path 
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Risk – Performance Tradeoff 

•  Desired probability of failure used to  
trade performance against risk-aversion. 

Method: Uniform Risk Allocation	


[Blackmore, PhD]	
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RMPC with Chance Constraints 

•  MPC 
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RMPC with Chance Constraints 
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SoluHon	
  Methods	
  for	
  
Chance-­‐Constrained	
  Problems	


•  Sampling	
  based	
  methods	
  
– Scenario-­‐based	
  

•  Bernardini	
  and	
  Bemporad,	
  2009	
  

– ParHcle	
  control	
  
•  Blackmore	
  et	
  al.,	
  2010	
  

•  Non-­‐sampling-­‐based	
  methods	
  
– EllipHc	
  approximaHon	
  	
  
(direct	
  extension	
  of	
  robust	
  predicHve	
  control)	
  

•  van	
  Hessem,	
  2004	
  

–  	
  Risk	
  allocaHon	
  
•  Ono	
  and	
  Williams,	
  2008	
  

61	
  



SoluHon	
  Methods	
  for	
  
Chance-­‐Constrained	
  Problems	


•  Sampling	
  based	
  methods	
  
– Scenario-­‐based	
  (see	
  Warren	
  Powell’s	
  tutorial).	
  

•  Bernardini	
  and	
  Bemporad,	
  2009	
  

– ParHcle	
  control	
  
•  Blackmore	
  et	
  al.,	
  2010	
  

•  Non-­‐sampling-­‐based	
  methods	
  
– EllipHc	
  approximaHon	
  	
  
(direct	
  extension	
  of	
  robust	
  predicHve	
  control)	
  

•  van	
  Hessem,	
  2004	
  

–  	
  Risk	
  allocaHon	
  
•  Ono	
  and	
  Williams,	
  2008	
  

62	
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ParHcle	
  Control	
  
1.  Use	
  parHcles	
  to	
  sample	
  random	
  variables.	
  

Obstacle 
1 

Obstacle 
2 

Goal Region 

Initial state 
distribution. 

Particles 
approximating initial 
state distribution. 

)(~)( t
i
t p νν)(~ 0,

)(
0, c
i
c p xx Ni …1= Ft …0=
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ParHcle	
  Control	
  
2.  Calculate	
  future	
  state	
  trajectory	
  for	
  each	
  parHcle,	
  leaving	
  

explicit,	
  dependence	
  on	
  control	
  inputs	
  u0:T-1. 

Obstacle 
1 

Obstacle 
2 

Goal Region 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)(
,

)(
0,

)(
:0,

i
Fc

i
c

i
Tc

x

x
x 

Particle 1 for u = uB 

Particle 1 for u = uA 

t=0 

t=1 

t=2 

t=3 

t=4 

t=0 

t=1 

t=2 

t=3 

t=4 

),,( )(
1:0

)(
0,1:0
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t

i
ctt

i
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ParHcle	
  Control	
  
2.  Calculate	
  future	
  state	
  trajectory	
  for	
  each	
  parHcle,	
  leaving	
  

explicit,	
  dependence	
  on	
  control	
  inputs	
  u0:T-1. 

Obstacle 
1 

Obstacle 
2 

Goal Region 

),,( )(
1:0

)(
01:0

)( i
t

i
tt

i
t f −−= νxux

⎥
⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)(

)(
0

)(
:0

i
F

i

i
T

x

x
x 

Particles 1…N  
for u = uB 

Particles 1…N  
for u = uA 
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ParHcle	
  Control	
  
3.  Express	
  chanc-­‐constraints	
  of	
  opHmizaHon	
  problem	
  

approximately	
  in	
  terms	
  of	
  parHcles.	
  

Probability of failure 
 approximated by the  
fraction of failing  
particles. 
. 

Sample mean 
approximates 
state mean. 

True expectation  
approximated by 
sample mean of cost 
function: Obstacle 

1 

Obstacle 
2 

Goal Region 

t=0 
t=1 

t=2 

t=3 

t=4 

E h(u0:F−1,x1:F )[ ]

≈
1
N

h(u0:F−1,x1:F
(i) )

i=1

N

∑
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ParHcle	
  Control	
  
4.  Solve	
  approximate	
  determinisEc	
  opHmizaHon	
  problem	
  

for	
  u0:F-1. 

Obstacle 
1 

Obstacle 
2 

Goal Region 

t=0 

t=1 

t=2 

t=3 

t=4 
10% of particles 
fail in optimal 
solution. 

δ = 0.1 
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Convergence	
  

–  As	
  Nà∞,	
  approximaHon	
  becomes	
  exact.	
  

Obstacle 
1 

Obstacle 
2 

Goal Region 
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Convergence	
  

–  As	
  Nà∞,	
  approximaHon	
  becomes	
  exact.	
  

Obstacle 
1 

Obstacle 
2 

Goal Region 
10% probability of 
failure. 
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MBARI	
  AUV	
  Science	
  Mission	
  

Remain in [safe region] 

Remain in 
[bloom region] 

e1 e5 
Remain in 

[mapping region] e2 e3 e4 End in 
[pickup region] 

[50,70] [40,50] 

[0,300] 

T(e1)=0 

T(e2)=70 

T(e3)=110 T(e4)=150 
T(e5)=230 



SoluHon	
  Methods	
  for	
  
Chance-­‐Constrained	
  Problems	


•  Sampling	
  based	
  methods	
  
– Scenario-­‐based	
  

•  Bernardini	
  and	
  Bemporad,	
  2009	
  

– ParHcle	
  control	
  
•  Blackmore	
  et	
  al.,	
  2010	
  

•  Non-­‐sampling-­‐based	
  methods	
  
– EllipEc	
  approximaEon	
  	
  
(direct	
  extension	
  of	
  robust	
  predicEve	
  control)	
  

•  van	
  Hessem,	
  2004	
  

–  	
  Risk	
  allocaHon	
  
•  Ono	
  and	
  Williams,	
  2008	
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EllipHc	
  ApproximaHon	
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No Fly Zone	
Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  



EllipHc	
  ApproximaHon	
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No Fly Zone	


1.  Specify	
  the	
  probability	
  distribuHon	
  of	
  the	
  future	
  states	
  
as	
  a	
  funcHon	
  of	
  control	
  inputs.	
  

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

Note:	
  When	
  planning	
  in	
  an	
  N-­‐dimensional	
  state	
  space	
  over	
  	
  Hme	
  steps,	
  	
  
a	
  joint	
  distribuHon	
  over	
  an	
  N-­‐dimensional	
  space	
  must	
  be	
  considered.	


99.9% 
99% 

90% 
80% 



EllipHc	
  ApproximaHon	
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No Fly Zone	


1.  Specify	
  the	
  probability	
  distribuHon	
  of	
  the	
  future	
  states	
  
as	
  a	
  funcHon	
  of	
  control	
  inputs.	
  

2.  Find	
  a	
  99%	
  probability	
  ellipse.	
  

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

99.9% 
99% 

90% 
80% 



EllipHc	
  ApproximaHon	
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No Fly Zone	
Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

1.  Specify	
  the	
  probability	
  distribuHon	
  of	
  the	
  future	
  states	
  
as	
  a	
  funcHon	
  of	
  control	
  inputs.	
  

2.  Find	
  a	
  99%	
  probability	
  ellipse.	
  
3.  Find	
  a	
  control	
  sequence	
  that	
  makes	
  sure	
  that	
  the	
  

probability	
  ellipse	
  is	
  within	
  the	
  constraint	
  boundaries.	


99.9% 
99% 

90% 
80% 



ConservaHsm	
  of	
  EllipHc	
  ApproximaHon	
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No Fly Zone	
 99.9% 
99% 
90% 

80% 
Issue:	
  oYen	
  very	
  
conservaEve	


Real	
  probability	
  	
  
of	
  failure	


Probability	
  density	
  funcEon	




ConservaHsm	
  of	
  EllipHc	
  ApproximaHon	
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No Fly Zone	
 99.9% 
99% 
90% 

80% 
Issue:	
  oYen	
  very	
  
conservaEve.	


ConservaEsm	




SoluHon	
  Methods	
  for	
  
Chance-­‐Constrained	
  Problems	


•  Sampling	
  based	
  methods	
  
– Scenario-­‐based	
  

•  Bernardini	
  and	
  Bemporad,	
  2009	
  

– ParHcle	
  control	
  
•  Blackmore	
  et	
  al.,	
  2010	
  

•  Non-­‐sampling-­‐based	
  methods	
  
– EllipHc	
  approximaHon	
  	
  
(direct	
  extension	
  of	
  robust	
  predicHve	
  control)	
  

•  van	
  Hessem,	
  2004	
  

–  	
  Risk	
  allocaEon	
  
•  Ono	
  and	
  Williams,	
  2008	
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Risk-­‐AllocaHon	
  Approach:	
  Overview	


79	
  

Idea	
  1:	
  We	
  easily	
  solve	
  a	
  chance	
  constrained	
  problem	
  with	
  one	
  
linear	
  constraint	
  C	
  and	
  one	
  normally	
  distributed	
  random	
  variable	
  x,	
  	
  
by	
  reformulaHng	
  C	
  to	
  a	
  determinisHc	
  constraint	
  C’.	


<	
  1%	


C(x) 
Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  
x̂ Δ

C '(x̂) ≈ C(x̂)−Δ



Risk-­‐AllocaHon	
  Approach:	
  Overview	
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Idea	
  2:	
  Generalize	
  to	
  a	
  single	
  constraint	
  over	
  an	
  	
  
N-­‐dimensional	
  random	
  variable,	
  
by	
  projecHng	
  its	
  distribuHon	
  onto	
  the	
  axis	
  	
  
perpendicular	
  to	
  the	
  constraint	
  boundary.	
  

99.9% 
99% 

90% 
80% 

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  



Risk-­‐AllocaHon	
  Approach:	
  Overview	
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99.9% 
99% 

90% 
80% 

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

Idea	
  3:	
  Generalize	
  to	
  a	
  joint	
  chance-­‐constraint	
  	
  
over	
  mulHple	
  constraints	
  C1,	
  C2,	
  by	
  distribuHng	
  risk.	
  



Risk-­‐AllocaHon	
  Approach:	
  Overview	
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99.9% 
99% 

90% 
80% 

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

Find	
  a	
  soluHon	
  such	
  that:	
  
1.  Each	
  constraint	
  Ci	
  takes	
  less	
  than	
  δi	
  risk.	
  
2.  	
  Σi	
  δi	
  ≤	
  1%	
  

	
  Note:	
  this	
  bound	
  is	
  derived	
  from	
  Boole’s	
  inequality.	
  



Risk-­‐AllocaHon	
  Approach:	
  Overview	
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99.9% 
99% 

90% 
80% 

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

Using	
  Boole’s	
  inequality,	
  	


Real	
  probability	
  	
  
of	
  failure.	




Risk-­‐AllocaHon	
  Approach:	
  ConservaHsm	


99.9% 
99% 

90% 
80% 

Chance	
  constraint:	
  	
  

Risk	
  <	
  1%	
  

ConservaHsm	


Significantly	
  less	
  conservaHve	
  than	
  the	
  ellipHc	
  approximaHon,	
  	
  
especially	
  in	
  a	
  high-­‐dimensional	
  problem.	




Managing Vehicles using Risk Allocation 

85 
Yu 

Ono & Williams, JAIR13 
Yu & Williams, IJCAI13 



Outline	
  

•  Goal-­‐directed,	
  Model-­‐PredicHve	
  Control	
  
•  StochasHc	
  OpHmizaHon	
  
•  IteraHve	
  Risk	
  AllocaHon	
  
•  OpHmal	
  Risk	
  AllocaHon	
  	
  
•  Appendix:	
  MulH-­‐agent	
  Risk	
  AllocaHon	
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Example: Race Car Path Planning 
•  A race car driver wants 

to go from the start to 
the goal as fast as 
possible. 

•  Actual path may differ 
from the planned path 
due to uncertainty. 

•  Crashing into the wall 
may kill the driver. 

•  Driver wants a 
probabilistic guarantee: 
   P(crash) < 0.1% 

–  Chance constraint. 
 

Start 

Goal 
Walls 

Planned Path 

Actual Path 
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Idea: Plan Nominal Path 
using Safety Margin 

Start 

Goal 
Walls 

Planned Path 

Actual Path 
Safety Margin 

Safety M
argin 

Problem 
 

Find the fastest path to the 
goal, while limiting the 
probability of crash 
throughout the race to 0.1% 

Risk bound 

Approach:  
1.  Set safety margin that 

guarantees that the risk  
bound is satisfied. 

2.  Plan optimal nominal path 
within safety margin. 

 

Simple Method:  
Uniform risk allocation.  
 

 



Not All Safety Margins are Equal 

Start Start 

Goal 

Safety margin 

Walls 

Goal 
Walls 

Safety margin 

   Uniform width Non-uniform width 

Shorter path 
89 

Longer path 



Idea: Design the Optimal Safety Margin  
by Allocating Risk 

Corner 
Narrow safety margin 
= higher risk 

Straightaway 
Wide safety margin 
= lower risk 

•  Added risk at the corner 
shortens the path more 
than the same amount of  
risk at the straightaway. 
–  Sensitivity of path length 

to changes in risk is 
higher near the corner. 

Risk Allocation: 
–  Find an allocation of risk to 

constraints that results in 
the best feasible solution. 

90 
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Iterative Risk Allocation (IRA) Algorithm 

Iteration 

• Descent algorithm 

•  Starts from a suboptimal risk allocation. 
•  Improves allocation at each iteration. 
•  But does not guarantee convergence. 

)()()( 2
*

1
*

0
* δδδ JJJ ≥≥
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 

Best path for  
safety margin. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
What Remains:  
•  Mathematical formulation: 

•  Reformulating stochastic  
to deterministic constraints. 



Comparison 
•  Approaches 

–  Elliptic Approximation: uses very conservative approximation of 
joint chance constraint. 

–  Sampling: approximates probability distribution by samples. 

•  Risk allocation results in near-optimal solution with 
significantly less computation time than sampling.   
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Test bed: Connected Sustainable Home 
F. Casalegno & B. Mitchell, MIT Mobile Experience Lab 

•  Goal: Optimally control HVAC, window opacity, washer/dryer, e-car. 
•  Objective: Minimize energy cost. 
•  Uncertainty: Solar input, outside temp, energy supply, occupancy. 
•  Risk: Resident goals not satisfied; occupant uncomfortable. 

99 



MPC for Dynamic Window 

Solar heat input 

Outside temperature 

R
oo

m
 T

em
pe

ra
tu

re
 

Optimal temperature 

C
om

fo
rt

ab
le

 ra
ng

e Heat the room using sunlight… 

…so that the temperature will stay within the 
comfortable range WITHOUT using heaters in the night 

6am 12pm 6pm 

IRA-R 
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Successive Risk Allocations for IRA-RMPC 

Takes risk of violating resident constraints where 
largest energy savings are possible. 

Home% Home%
Asleep%

Home% Home%

18°C 

12 pm 5 pm 12 pm 0 am 

22°C 

20°C 

25°C 

30°C 

5°C 
12 pm 5 pm 12 pm 0 am 8 am 8 am 

(a) First Iteration (b) Second Iteration 

Active' Active'

Inactive'

: Optimal plan at current iteration 
: Optimal plan at previous iteration 

: Safety margin 

Asleep% Away% Away%



Successive Risk Allocations for IRA-RMPC 

Given chance-constrained Qualitative State Plan (CC-QSP): 
1.  (Re-)allocates risk. 
2.  Reformulates to deterministic QSP and calls Sulu. 
3.  Repeats. 

Home% Home%
Asleep%

Home% Home%

18°C 

12 pm 5 pm 12 pm 0 am 

22°C 

20°C 

25°C 

30°C 

5°C 
12 pm 5 pm 12 pm 0 am 8 am 8 am 

(a) First Iteration (b) Second Iteration 

Active' Active'

Inactive'

: Optimal plan at current iteration 
: Optimal plan at previous iteration 

: Safety margin 

Asleep% Away% Away%



Results 
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Improvement in Comfort 

•  Deterministic control (Sulu): 30% comfort violations. 
•  Robust control (p-Sulu): near 0% violations. 



Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Appendix: Multi-agent Risk Allocation 



Finding Optimal Risk Allocations 

Given that the Boole’s inequality approximation 
has been performed. 
 
Idea: 
1.  Formulate optimal risk allocation as a 

stochastic program. 
2.  Map to deterministic (non-)convex program, 

with risk and control variables as decision 
variables. 

3.  Solve exactly using deterministic solver. 



Problems 

Waypoint	
  

Goal	
  

Start	
  

t = 1 

t = 5 

Convex,	
  single	
  agent	
  

Fixed	
  schedule	
  

Non-­‐convex,	
  single	
  agent	
  

C	
  

Waypoint	
  

Goal	
  

Start	
  

Obstacle	
  

t = 1 

t = 5 

Fixed	
  schedule	
  

C	
  

Waypoint	
  

Goal	
  

Start	
  

Obstacle	
  

[1	
  3]	
  

[2	
  4]	
  

[0	
  5]	
  

Simple	
  temporal	
  
constraints	
  

Non-­‐convex,	
  flexible	
  schedule,	
  single	
  agent	
  

Waypoint	
  

Goal	
  

Start	
  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	
  mulE-­‐agent	
  

Fixed	
  schedule	
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Chance constraint 

Stochastic dynamics 
Risk bound 

(Upper bound of the 
probability of failure) 

Assumption: Δ < 0.5 
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Conversion of Joint Chance Constraint 

Δ−≥⎥⎦
⎤

⎢⎣
⎡ ≤∧∧

==
1Pr

00

i
tt

iT
t

N

i

T

t
gxhJoint chance 

constraint 
Intractable 
- Requires computation of complex integral over multivariate Gaussian.  

1 

A set of individual chance constraints. 
-  Each involves one hard constraint,  

over a univariate Gaussian distribution. 

2 

A set of deterministic state constraints. 
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Decomposition of Joint Chance Constraint 

Δ−≥⎥⎦
⎤

⎢⎣
⎡ ≤∧∧

==
1Pr

00

i
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i
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gxhJoint chance 

constraint 

Use Boole’s inequality (union bound) 
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Upper bound of the 
probability of violating 
ith constraint at time t. 

Upper bound of the 
probability of violating 

any constraint over the 
planning horizon. 

Risk allocation:  
[ ]NTδδδ 21
1
1 ,=δ

1 Decomposition of Joint Chance Constraint 

Variable 

Constant 
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Outline 
•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Multi-agent Risk Allocation 
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Non-Convex Problem Formulation 
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Problem Formulation: Non-Convex Chance Constraint 
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Decomposition Through Risk Selection 
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Decomposition Through Risk Selection 
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Solution: Branch and Bound  
for a Convex Disjunctive Program 
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Stochastic DLP Branch and Bound 
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2111 CC ∧ 2211 CC ∧ 2112 CC ∧ 2212 CC ∧

Convex Optimization Problems 

 Repeat until no clauses left: 
1.   Select clause. 
2.  Split on disjuncts. 
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Stochastic DLP Branch and Bound 
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Convex Optimization 

Waypoint	
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t = 5 

Convex,	
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Fixed	
  schedule	
   Repeat until no clauses left: 
1.   Select clause. 
2.  Split on disjuncts. 



Bound Through Convex Relaxation 
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•  Bound: Remove all disjunctive clauses [Li & Williams 2005]. 

•  Issue: Computing bound is slow!! 
•  Cause: Sub-problems include non-linear constraints. 



Subproblems of BnB (non-linear) 
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Subproblems of BnB (non-linear) 
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Fixed Risk Relaxation: Intuition 

•  Results in an infeasible solution to the original problem. 
•  Gives lower bound for the cost of the original problem. 
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Start 

Goal 

Safety margin 
Start 

Goal 

FRR Safety margin 

FRR Original problem 
Sets safety margin for all 
constraints to max risk Δ. 



Approach: Fixed Risk Relaxation (FRR) 
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•  FRR: linear relaxation of each subproblem. 
–  Has only linear constraints (typically LP / QP). 
–  Gives lower bound on the cost of sub-problem. 
–  May generate infeasible solution to original problem. 



Fixed Risk Relaxation (Linear) 
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• All constraints are linear (FRR is typically LP or QP). 
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Algorithm: BnB + FRRs 
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φ
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•  Solve FRRs of subproblems to reduce computation time. 
•  Solve subproblem without relaxation at unpruned leaf nodes to 

obtain exact solution. 
•  Significantly reduces computation time without compromising 

optimality. 

Prune if  
(FRR cost) > incumbent  

2111 CC ∧

Prune if  
(FRR cost) > incumbent  

Optimal 
solution 



Outline 
•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation 

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Appendix: Multi-agent Risk Allocation 
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Problem Formulation 
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Two-layer Approach 
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Outer-loop: Schedule optimization 
function p-Sulu(ccqsp) 
  incumbent ← INF; 
  for  s 
    (J*, U*) ← innerLoop(s,ccqsp); 
    if J* < incumbent     
      incumbent ← J*; 
      solution ← (s,U*)  
    endif 
     endfor 
  return solution; 

Inner-loop: fixed schedule CC-QSP as a Stochastic-DLP 
function innerLoop(s,ccqsp) 
  Solve chance-constrained optimal control with s and ccqsp; 
  U* ← Optimal control sequence; 
  J* ← Optimal objective value; 
  return (J*, U*); NIRA Algorithm 



Results 1: Personal Transport Scenario 
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Results 2: 2 Obstacles, 3 Goals 
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Performance Improvement 
Using Boosting Tree-based Regression 

Scenario # 1 2 3 4 
NIRA 135.21 219.76 79.99 80.15 
NIRA w/ Boost-LP 3.84 4.15 3.03 2.93 

144 

• Both algorithms always result in the same solution  

NIRA 
NIRA w/ Boost-LP 

T=20, Δ=0.01 
Scenaros: 
#1:  2 obstacles and no waypoint 
#2:  2 obstacles and 2 waypoints 
#3:  1 obstacle and 1 waypoint, 

 trained with different disturbance 
level  

#4:  1 obstacle with 1 waypoint, 
 trained with different control 
constraints 

* Banerjee, A. G., & Roy, N. (2010). Learning 
Solutions of Similar Linear Programming 
Problems using Boosting Trees. CSAIL 
technical report MIT-CSAIL-TR-2010-045 



P-Sulu Performing  
Rendezvous and Docking on Spheres 
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Facilitating Sustainability 
Requires Managing Risk 
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Risk Allocation 

Iteration 

1.  IRA: reallocates risk manually. 
2.  CRA,NRA: standard solver reallocates risk. 
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Risk-bounded Planning 
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Risk Allocation Algorithms 
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Outline 

•  Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 
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Problem Formulation for Multi-agent 
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Problem Formulation for Multi-agent 
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i: Index of agents 
I agents, Ni state constraints for i’th agent 

•  Minimize aggregate cost 
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Problem Formulation for Multi-agent 
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•  Minimize aggregate cost 
•  Bound the probability that all agents satisfy all constraints 

–  System fails if one agent violates constraints. 
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Risk Allocation between Agents 
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•  Need to optimize risk allocation 
between agents since sensitivity 
to risk is different 

+ 

System’s risk bound: 0.1% 

0.02% 0.08% 

Risk is distributed among agents 
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User 

specifies 

∑ Individual 
risk bounds ≤

System’s 
risk bound 



Approach: Decentralized Optimization 

•  Each agent is an 
independent decision maker 

•  Communicates with others 
•  Finds globally optimal 

solution through iterations 
•  Inspired by an economic 

process tâtonnement 
–  Risk = resource traded in a 

market 
–  Each agent has a demand for 

risk as a function of the price 
of risk   
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User supplies risk by 
specifying the risk bound 

Agents consume risk  

+ 

System’s risk bound: 0.1% 

0.02% 0.08% 

∑ Individual 
risk bounds ≤

System’s 
risk bound ∑ Demands 

for risk ≤ Supply  
of risk 



DR 

Market-based Solution to Distributed Risk Allocation 
(Dual Decomposition) 

Pr
ic

e 

Quantity 

Agent 2’s demand 
Agent 1’s demand 

Aggregate demand 
DW 

S 

0.1% 

p* 

D*W D*R 

Equilibrium price 

Risk allocated to Agent 2 Risk allocated to Agent 1 

System operator specifies the risk bound (supply) 

DW +DR 
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Iteratively set price  
using Tâtonnement. 



Market-based Iterative Risk Allocation Algorithm 
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Decentralized Optimization 

Dual Decomposition 
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Properties of MIRA 

•  Existence of decentralized solution 
–  If the centralized optimization has an optimal solution, it is 

also an optimal solution for the decentralized optimization 

•  Optimality of decentralized solution 
–  If the decentralized optimization has an optimal solution, it 

is also an optimal solution for the centralized solution 

•  Convergence of MIRA 
–  MIRA is guaranteed to converge to an optimal solution if it 

exists  
      MIRA is guaranteed to converge to the same 
solution as the centralized approach 
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Proofs 

•  Existence 

•  Optimality 

•  Convergence 

163 

    The KKT conditions of 
decentralized optimization coincide 
with the KKT conditions of 
centralized optimization 



    Demand functions are 
continuous; Brent’s method is 
guaranteed to converge for 
continuous functions 





Sketch of Proof 
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Sketch of Proof 
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MIRA (each agent) 
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Centralized Optimization 
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MIRA (central module) 
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KKT comp. 
slackness 
condition: 

•  Special case with p=0 is handled separately 



Proofs 

•  Existence 

•  Optimality 

•  Convergence 
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    The KKT conditions of 
decentralized optimization coincide 
with the KKT conditions of 
centralized optimization 



    Demand functions are 
continuous; Brent’s method is 
guaranteed to converge for 
continuous functions 





Definition: Cost of Risk for i’th Agent 

            : minimum cost the agent can achieve 
when it is allowed to take up to     of risk in total 
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Each Agent’s Optimization Problem 

= 

170 



Sketch of Proof 

Starting from: convexity of             (assumption) 
1.               is monotonically decreasing, strictly convex 

–  strict convexity of          (inverse of cdf of Gaussian) 

2. Di(p) is continuous 
–  Conjugate Subgradient Theorem (Bertsekas 2009) 
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Convergence to Optimal Solution 
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Result: Scalability 

Values are the averages of 100 runs each 
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