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Some levels of risk are unacceptable.
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Imm;méct of Uncertainty on Dynamic Systems

Uncertainty in
wind power

Uncertainty in

wind speed causes... Uncertainty in

vehicle position
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Model-hased Embedded & Robotic Systems

Motivation: High Penetration of Renewables

Electrical grid must prepare for high penetration of
renewables.

Challenge: Wind and solar are undispatchable,
intermittent, and unpredictable.
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Model-hased Embedded & Robotic Systems

Sustainable Homes

« Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.
* Objective: Minimize energy cost.

» Uncertainty: Solar input, outside temp, energy supply, occupancy.

* Risk: Resident goals not satisfied; occupant uncomfortable.

Connected Sustainable Homes Testbed
Federico Casalegno (Pl), MIT Mobile Experience Lab

s
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IIIIIII llimllllllll Robotic Systems

(Sub)Urban Scale Sustainabillity

 Heterogeneous
connected homes with
different energy
sources.

* Symmetric energy
exchange between
houses.

= °* Challenge:
— How to distribute
energy optimally,

— while limiting the risk of
an energy shortage,

— without centralized
control.

Bottom-Up Grid Project,
MIT-EI-Tata.
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Model-hased Embedded & Robotic Systems

Vehicle Electrification and Autonomy

» Barrier to adoption due to range anxiety.
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~ Vehicle Electrification and Autonomy
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“Environmental Observing Systems
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Model-hased Embedded & Robotic Systems

Environmental Observing Systems

« Barriers to high science return include operational
cost and mission risk.

Joint collaboration with
Woodshole Deep Submergence Lab and
The Monterrey Bay Aquarium Research Institute
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== Facllitating Sustainability

Requires
P

Anaerobic
Dl'g_gster
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IIIIIII IIEmIllIIllI Robotic Systems

Risk-bounded Planning

(Goal-directed Model-Predictive Control)

Fixed schedule \
& t:

r=1 /Goal

rd

Maypoint

Start

Convex, single agent

Fixed schedule r=5
t=3 L9 t=

Waypoint

Start

o

Convex, -agent

Fixed schedule\

l‘=1‘

Obstacle
Waypoint

Start

Goal

L [T convex, single agent

Simple temporal —> [2 4]

constraints
v =
13
[ ] Goal

Obstacle

Waypoint

Start [O 5]

Non-convex,

schedule, single a‘ﬁ@ht



Model-hased Embedded & Robotic Systems

==

Fixed schedule \

r=1 /Goal

rd

Maypoint

Start

Stochastic Optimization Problems

Convex chance-constrained opt.

Fixed schedule r=5
t=3 L9 t=

Waypoint

Start
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r=5
~0
Goal

l‘=1‘

Obstacle
Waypoint

Start

chance-constrained opt

convex, chance-constrained opt

Simple temporal —> [2 4]

e

constraints
v
[13]
W

Waypoint

Obstacle

Start [O >

Goal
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Chance-constrained
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LI Risk Allocation Algorithms

Fixed schedule Fixed schedule  ¢=35
\ . s R -
Lo ’_/ e
"y /Goal /Goa|
"
Maypoint Waypoint
Start Start
IRA (Iterative Risk Allocation) MIRA (Market-based IRA)
AN e
AN

Fixed schedule Simple temporal —> [2 4]
\ constraints
t=5 ‘L
~®
N

Goal [1 3] Soal

=1 oa
~ P
Obstacle Obstacle
Waypoint Waypoint

Start Start [0 5]

I'li IRA (Non-convex Risk Allocation) p-Sulu (probabilistic Sulu)  ©



Outline

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

» Goal-directed, Model-Predictive Control
« Stochastic Optimization

* [terative Risk Allocation

Optimal Risk Allocation

* Appendix: Multi-agent Risk Allocation
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Model-Predictive Control

* Plan control trajectory =
constraint optimization

minJ(p)
P

S.t.
peEP

p: path
P: Set of feasible paths
J: cost function

IIT essechusots mstiets ofTochmoony 17 e,



Finite Horizon Model-Predictive Control

l=ih=

Model-based Embedded & Robotic Systems

« Formulate as Linear (LP), Mixed Integer (MILP) or Mixed-Logic (MLLP) Program.

I [Ty
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min J(X; XU, -U,)

XpnoUry
S.t.

= = e — Dynamics
ka <g (k — 091, .. N) Spatial constraints
X0 = Xian Initial position and velocity
Xy = Xgoal Goal position and velocity
-u_ <u, =<u__ (k=0]1---N-1) Actuation limits

XkE(xk Ve X )./k)Tﬂ ukE(Fx,k Fy,k)r

Cost function

CCCCC



Example Constraints

!:d!lﬁeln_i\mﬁlen & Rohotic Systems
o 2-D Omni-dimensional Holonomic Vehicle in a room =
Dynamics
X\ (F;
m =
v L
| F 1= Froaol F), IS F,, (Thrust limits)
Discrete-time dynamics*
(zero-order hold assumption)
X, 1 0 At 0)\/x, 0.5At* /' m 0
Viul 0 1 0 Atfly, 0 0.5At% / m , Initial velocity B
= +
X | |00 1T 0 x At/m 0 Fy Start
Vi) \O 0 0 1T Ay 0 At/ m
*How to obtain discrete-time dynamics from
xt+ 1 - Axt + But ?%rll(t;nauﬁ;gi-ggﬁrimatggrsy.text books (chapter on

discrete-time system)
*Use MATLAB c2d command

o s
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Example Constraints

l=ih=

Model-based Embedded & Robotic Systems

e 2-D Omni-dimensional Holonomic Vehicle in a room L~

X
th( ) =&
y

Spatial constraints:
Vehicle must be in the room

4 T X

AN, =g,

n=1 y

or

Hx=<g h,' (x) _ gz/ Initial velocity B
Y Start

o s
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Example Cost Function

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic Systems

 \What cost function should we use?
— Example: minimum control effort

Fx,k

+‘F

N-1
y.k ‘
=1

N-1
J(Xp Xy Uy ) = Z (1 1111]{‘ - Z
=

— Problem: This is not a linear function!!
— There are tricks.

minu” +u"

. . minv
mln‘u‘ Uu=u —1u or

i vV=u,v=-—u,
u =0,u” =0,

Mir . 21 igin
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Formulation of Receding Horizon Control

l=ih=

Model-based Embedded & Robotic Systems

xgvlgljv J(Xl ot .uN) + f(XN) Cost function
Cost-to-go function

S.t. |
= — e — Dynamics
ka <g (k =0,1,-- N) Spatial constraints
X0 = Xian Initial position and velocity

It is not a good idea to fix N (time horizon)

q@% Goal position and velocity
-u_ <u, =<u__ (k=0]1---N-1) Thrust limits

XkE(xk Ve X )./k)Tﬂ ukE(Fx,k Fy,k)r

I [Ty
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Receding Horizon Control

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

 Patchwork. -~

KFirst N steps
Start

o s
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Receding Horizon Control

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

 Patchwork. -~

/ Next N steps
kFirst N steps
Start

I ~
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More on Receding Horizon

AP

l=ih=

Model-based Embedded & Robotic Systems

Predicted position at r = 20

* 10 seconds later.... ® Goal

(\Plan

Current position (¢

o s
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More on Receding Horizon

AP

l=ih=

Model-based Embedded & Robotic Systems

 World uncertain.

Actual path

o s
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Execution Horizon < Planning Horizon

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

« 3 seconds later....

Predicted position at r = 20
® Goal

(\Plan

Current position (f|= 10)

o s
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Execution Horizon < Planning Horizon

« 3 seconds later....

. _ _ Predicted position at r = 20
» Position a little bit off

from the plan.

® Goal

(\Plan

Current position (t £ 13)

o s
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Execution Horizon < Planning Horizon

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

« Abandon the plan after
t=13.

%‘\Current position (f ¥

K Start

o s
lll | l Massachusetts Institute of Technology 29 TCsAIL
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Execution Horizon < Planning Horizon

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

« Abandon the plan after
t=13.

Predicted position at r = 23

® Goal
* Replan for another

planning horizon.

“——Current position (f ¥ 13)

K Start

o s »
lll | l Massachusetts Institute of Technology 30 Wﬂ’
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* Repeat.




Test bed: Connected Sustainable Home

Model-based Embedded & Robotic Systems

nm=in= F. Casalegno & B. Mitchell, MIT Mobile Experience Lab

! . - L
’ NI ’_'l ._. ’l &

« Goal: Optimally control HVAC, window opacity, washer and dryer, e-car.
* Objective: Minimize energy cost.

o s
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Goal-directed Model-Predictive Control:
M=k Resident Goals

“Maintain room temperature after waking up until I go to
work. No temperature constraints while I’'m at work, but
when I get home, maintain room temperature until I go to
sleep. Maintain a comfortable sleeping temperature while 1

sleep.

o s
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Goal-directed Model-Predictive Control:
M=k Resident Goals

Also, dry my clothes before morning.

o s P L
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Goal-directed Model-Predictive Control:
M=k Resident Goals

I need to use
my car to drive to and from work, so make sure it is fully
charged by morning.

[Ty dJ L
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Goal-directed Model-Predictive Control:

M=k Resident Goals

It’s acceptable if my clothes aren’t
ready by morning or if the house is a couple degrees too
cold, but my car absolutely needs to be ready to use before
I leave for work.”

l .-
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Goal-directed Model-Predictive Control:
M=k Resident Goals

“Maintain room temperature after waking up until I go to
work. No temperature constraints while I’m at work, but
when I get home, maintain room temperature until I go to
sleep. Maintain a comfortable sleeping temperature while 1
sleep. Also, dry my clothes before morning. I need to use
my car to drive to and from work, so make sure it is fully
charged by morning. It’s acceptable if my clothes aren’t
ready by morning or if the house is a couple degrees too
cold, but my car absolutely needs to be ready to use before
I leave for work.”

.-
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Flexibility Available to Control

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

* When activities are performed.

 When to charge/discharge batteries.

* Which activities to shed (when supply is low).

o s
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Encodlng Qualitative State Plan (QSP)

ﬂllllﬂl based EITIIIEIIIIGII & Robotic Systems

Sulu [Leaute & Williams, AAAIO5]

[24 hours]

[1-3 hour]

Maintain
room

[7-9 hours] [6-8 hours] [7-8 hours] %
Malntaln room Go to Maintain comforta
temperature sleep sleeping temperature

“Maintain room temperature after
waking up until I go to work. No
temperature constraints while I’m at
work, but when I get home, maintain
room temperature until I go to sleep.
Maintain a comfortable sleeping
temperature while I sleep.”

e 1
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Encoding: Qualitative State Plan (QSP)

l=ih=

Model-based Embedded & Robotic Systems

Sulu [Leaute & Williams, AAAIO5]

[24 hours]

,-*"" [7-8 houts],

/ \
Maintain comforta
sleeping temperat re

N 7/

N

\\

“Maintain room temperature dﬁer T
waking up until I go to work. No-_ o )
temperature constraints while I’'m at
work, but when I get home, maintain
room temperature until I go to sleep.
Maintain a comfortable sleeping
temperature while I sleep.”

(@]
=
o
=
o
j=3
)
2
@
3
h=3
o
8
=4
@
pel
o
2
pod

4420 4425 4430 4435 4440
Time [hour]

A
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Encode the Qualitative State Plan and Dynamics
e within a Model-Predictive Controller

Model-based Embedded & Robotic Systems

Sulu [Leaute & Williams, AAAIO5]

cot minJ(X,U)+ H(x,)

S.L.
Dynamics O<:YT 1‘xt+1 = Axt +B U,
(Discrete time) S
T N M .T .o
NNV h x <sg/
Constraints t=0i=0 j=0
State X =1x, ---xt]r
Control U= Uy U, ]T Mixed Integer and Logic

40
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l=ih=

Model-based Embedded & Robotic Systems

(p)Sulu Results

Maintain

I o s
I l" Massachusetts Institute of Technology

Temperature (C)

28

27

26

23

24

23

— Temperature

— — — Consfraints

o .- > 10 -1 15

.

Time{hours)
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Energy Savings: Optimal Control

N=h=

Model-based Embedded & Robotic Systems

~__ _ _ Winter Summer
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 1.9379 x 10* 0.000 | 3.4729 x 10* 0
Sulu | 1.6506 x 10* 0.297 - -
PID || 3.9783 x 10* 0 | 4.1731 x 10* 0
Spring Autumn
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 3.3707 x 10* 0 || 3.8181 x 10* 0
Sulu | 3.0954 x 10* 0.308 || 3.6780 x 10* 0.334
PID | 3.9816 x 10* 0 || 3.9955 x 104 0

« 42.8% savings in winter over PID.

* 15.3%, 16.8%, and 4.4% in
spring, summer, autumn.

III. fEEy
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l=ih=

Model-based Embedded & Robotic Systems

Additional Savings Due to Flexibility

35 - 35 Rl
—+— Fixed schedule | ST Flexible schedule | \
— — — Temp. bounds | I — — — Temp. bounds [ \
FoF ’ ‘
30 + I / \\ 30 | \
_ I / \ . I \
e b ) e L7~
o e ) o I o
g 25 ! o g 25 R [
E’_ /! L ’g_ / / \
/ \ /T N
GE) 77777777 / 4 + GE) 77777777 ;o N
@ / N [t : ~
20 o T 20 . .
T~ //7\ [ I~ /'/77771 | T T T T
I el el | [ | ===y [ [
| l \ [
| I \ I
15 1 [ | 1 1 15 1 1 | 1 | 1
0 5 10 15 20 0 5 10 15 20

Time (hours) Time (hours)

* 10.4%, 1.6%, 1.6%, and 0.7% in the
winter, spring, summer, and autumn.
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Outline

!nld!lﬁeld_i\m%en & Robotic Systems

» Goal-directed, Model-Predictive Control
« Stochastic Optimization

* [terative Risk Allocation

Optimal Risk Allocation

* Appendix: Multi-agent Risk Allocation

Uiy -
Massachusetts Instituteof Technology e



The Danger of Ignoring Uncertainty

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic Systems
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Depth (m)

Altitude (m)

T
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Depth (m)

200

100

@
g
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Depth Navigation for Bathymetric Mapping — Jan. 2319, 2008
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Model-hased Embedded & Robotic Systems

Issue: Frequent Mission Aborts

Mission abort

Attitude is less than the minimum
altitude

Actual trajectory

—
-
-
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L Robust Model Predictive Control

Model-based Embedded & Robotic Systems

* Receding horizon planners react to uncertainty
after something goes wrong.

« Can’t we take precautionary actions
before something goes wrong?

«Ali A. Jalali and Vahid Nadimi, “A Survey on Robust Model Predictive
Control from 1999-2006.”

49
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IIIIIII llimlllllld Robotic Systems

Robust versus Chance Constrained

Massachusetts Institute of

g Windspeed No FIy Zone
c
@)
: @
() > ——
- >
i
‘g .9 \ v _2
Q0 8 s £ * Predicted posmon has bounded uncertainty.
é E Assumes bounds on * Problem: Find a control sequence that satisfies the
uncertainty. constraints for all realizations of uncertainty.
8 _ Wind speed NO Fly Zone
c O Y
o= 9%
58 /1o
g (@) ()2(10/“\ X
()
? > \
5 k. 2 « Predicted position has probabilistic uncertainty.
O - redicted p p y
_‘:U o ﬁ;il:irlr]oﬁfignptrr?at bility « Problem: Find a control sequence that satisfies
O . . the constraints within a probability bound
i characterizes uncertainty.

Technology (Chance Constraint).



Incorporating Uncertainty

l=ih=

Model-based Embedded & Robotic Systems

- Deterministic discrete-time weW
LTI model

= Ax, + Bu,

« Additive uncertainty R

yA

xt+1

X

o =Ax, +Bu, +w,

« Multiplicative uncertainty

x,,, =(A+AA)x, + Bu,

n

i
i ”N (i

i
i (OIS
"

! e
.

W
: ': A
(T
ddaiantion
e

AN o
A B
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What to Minimize”? (Bounded Uncertainty)

==

 Minimize the worst case cost
minmax.J (X, U)
U welW
s.t. W‘gW h'x <g

wEW : Bounded uncertainty

e Minimize nominal cost
m&n J(X,U):Cost when w=0
st. Y h'x <g

wel

weEW : Bounded uncertainty

o (Al ‘T
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What to Minimize? (Stochastic Uncertainty)

!IHIIT=IH_E\§I 0 & Robotic §

 Utilitarian approach

min./ (X, U) + pf (g)
Penalty (constant) Probability of failure

 Chance constrained optimization
n%in J(X,U)
st. f(U)=sA

i

Probability of failure - Risk bound £

o s
lll Il massachusetts Institute of Technology = ceail




Chanced Constrained,
M=hs Robust Path Planning

— "Plan optimal path to goal such that p(failure) < A.”

Expected path
@ P

\
\
\
\
\
\

: ‘
’
’
’
v’
¢
7
/7
/7
1
1
\
\
\
\
\
\
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. Risk — Performance Tradeoff

Model-based Embedded & Robotic Systems

» Desired probability of failure used to
trade performance against risk-aversion.

14 T T
—— No uncertainty
- A=01 110
AR . = = A=0.001
121 o A=0.0001 7 10517 o S
100
107 o5l . . VI”IVIIII . . :::,,, . 17”17 . IIIIVI”
90 R [N S N NG e e
8
8’ % 85
7 i
[7)
® 80
E
>
6F 75
70
4t 65
60 “l . i | i i R
10° 10* 10° 10° 10™
Maximum Probability of Collision (A)
2,
0 . . . . . . Method: Uniform Risk Allocation

> 4 6 8 10 12 14 18 [Blackmore, PhD]

x(meters)

- M
i - 55 L
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RMPC with Chance Constraints

M=hS
0 I\/IPC ]
minJ (X, U)
U
S.1.
Dynamics V x A)Ct +B1/lt
(Discrete time) O<t<T -1
T N - ,
| ANANR X ’
C
onstraints (0 iz0 gt

L) < 56 A
Massachusetts Institute of Technology @~ MYV P



RMPC with Chance Constraints

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic System:

n%in J(X,U)
s. 1.

Stochastic dynamics V X =Ax +Bu 4+ W
t+1 t t {

O<t<T-1

I' N

1T l
Constraints tAO 'AO hz xt = gt
=0 =

e [P Vsta]]
|I|" Massachusetts Institute of Technology o7 e



RMPC with Chance Constraints

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic System:

minJ (X, U)
U
S.1.
Stochastic dynamics V X =Ax +Bu + W
0<t<T—1 t+1 t t t

+«— Gaussian distribution
W, ~ N (Oazt)

Xo ~ N(X5,2, )

T N

1T l
Constraints tAO 'AO hz xt = g {
=0 =

I o s
l I l ' Massachusetts Institute of Technology 58
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RMPC with Chance Constraints

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic System:

n%in J(X,U)
S.L.

Stochastic dynamics V X =Ax +Bu + W
0<t<T—1 t+1 t t t

W, ~ N(Oazt)

~ o

-7 T N T .\\\
l l \
( )
Constraints e /—\O ii\O ht xt - gt

- -
o -
— -
L [——

o s
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RMPC with Chance Constraints

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic System:

minJ (X, U)
U
S.1.
Stochastic dynamics V X = Ax 4 Bu + W
0<t<T—1 t+1 { { {
Upper bound on the
W, ~ N (O, Zt) probability of failure
. = Risk bound.
X0 NN(xoazx,o) \
-7 N -

Chance constraint  Pr| A A h;Txt < gtl > ] —{A )
t=0i=0

o s P L
lllll Massachusetts Institute of Technology 60 k “lc sail




NS Solution Methods for
Chance-Constrained Problems

 Sampling based methods

— Scenario-based
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
* Ono and Williams, 2008

oo
Ill I | Massachusetts Institute of Technology



NS Solution Methods for
Chance-Constrained Problems

 Sampling based methods

— Scenario-based (see Warren Powell’s tutorial).
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
* Ono and Williams, 2008

62
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Model-hased Embedded & Robotic Systems

Particle Control

1. Use particles to sample random variables.

Xo~P(X) v ~pv)  i=1..N

Goal Region

Obstacle
1

Initial state
distribution. g)bstacle
Particles

approximating initial
state distribution.

63
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"Illlel based Emlmlnell & Rohotic Systems

Particle Control

2. Calculate future state trajectory for each particle, Ieaving

explicit, dependence on control inputs u,.r;. x9 ]
(l) @ ,,0) ORI
= fi (W, 15X 05V Xeor =| -

(l)

cF

Goal Region

Particle 1 for u = Uy |  t=4

Obstacle |
1

Particle 1 foru=u,

Obstacle
2

64
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"Illlel based Emlmlnell & Rohotic Systems

Particle Control

2. Calculate future state trajectory for each particle, leaving

explicit, dependence on control inputs u,.r;. x]
(l) (D) ,,00) < _
= f,(Wg, 1, Xq Vo, Xor =| ¢
x
Particles 1...N oojgcb ¢ |Goal Region
foru=u;, —— =

Particles 1...N
foru=u,

Obstacle
2

65
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Model-hased Embedded & Robotic Systems

Particle Control

3. Express chanc-constraints of optimization problem

approximately in terms of particles.

Probability of failure
approximated by the
fraction of failing
particles.

Sample mean
approximates ——
state mean.

Goal Region

Obstacle

66

.-
Ill l l Massachusetts Institute of Technology

True expectation
approximated by
sample mean of cost
function:

E [h(uO:F—l > X1.p )]

1 N
~ N E‘,h(UO:F—l’Xle
i=1

CSAIL



==

Model-hased Embedded & Robotic Systems

Particle Control

4. Solve approximate deterministic optimization problem

0=0.1

Goal Region
10% of particles |
fail in optimal
solution.

Obstacle
2

.-
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Model-hased Embedded & Robotic Systems

Convergence

— As N—>©°°, approximation becomes exact.

Goal Region

Obstacle
2

.-
Ill I l Massachusetts Institute of Technology
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Convergence

— As N—>©°°, approximation becomes exact.

Goal Region

10% probability o
failure. f§

Obstacle

.-
Ill I l Massachusetts Institute of Technology
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Model-hased Embedded & Robotic Systems

MBARI AUV Science Mission

[0,300]

[50,70] T(e)=110 4450 T(e)=150

T(e;)=230
Remain in Remain in End in
(ony (o) i} -+ o0 |
T(e)=70 /

={ Remain in [safe region] J

0
| N |
50— A | .
l: I : : : : : ‘777‘ : ]. : :
. | . . . [*‘77?77'*7*74‘7 . l . . .
100— | R e ' 0
£ | o |
| || | |- - - Depth Waypoint
: ‘ ‘ - Particles
‘ ‘ ‘ ‘ 3 3 3 Bloom Region
200 : : - |——Mapping Region| |
—— Goal Region
— Depth Limit
250 ‘ ‘

60 80 100 120 140 160 180 200 220 240
Time(s)

70
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NS Solution Methods for
Chance-Constrained Problems

 Sampling based methods

— Scenario-based
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
* Ono and Williams, 2008

71
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!IdIIT= .d_}%ed & Rohotic Systems

Elliptic Approximation

Chance constraint: No Fly Zone
Risk < 1%

72
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Model-hased Embedded & Robotic Systems

Elliptic Approximation

Chance constraint:

Risk < 1%

1. Specify the probability distribution of the future states
as a function of control inputs.

Note: When planning in an N-dimensional state space over time steps,
a joint distribution over an N-dimensional space must be considered.

73
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T RN ptic Approximation

Chance constraint:

Risk < 1%

1. Specify the probability distribution of the future states
as a function of control inputs.

2. Find a 99% probability ellipse.

o s
Ill | ' Massachusetts Institute of Technology 74
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T RN ptic Approximation

Chance constraint:

Risk < 1%

1. Specify the probability distribution of the future states
as a function of control inputs.

2. Find a 99% probability ellipse.

Find a control sequence that makes sure that the
probability ellipse is within the constraint boundaries.

o s
I Il l ' Massachusetts Institute of Technology 75
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PENS e

Conservatism of Elliptic Approximation

No Fly Zone

Issue: often very /

conservative

Real probability
of failure — f p(x) dx
robability density function

< 1—[ p(x)dx = 1%
O

76
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Conservatism of Elliptic Approximation

No Fly Zone

Issue: often very
conservative.

Conservatism= f p(x)dx
-0

i 77 g
Il massachusetts institute of Technologyy 44 e



NS Solution Methods for
Chance-Constrained Problems

 Sampling based methods

— Scenario-based
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
 Ono and Williams, 2008

.-
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Model-hased Embedded & Robotic Systems

Risk-Allocation Approach: Overview

ldea 1: We easily solve a chance constrained problem with one
linear constraint C and one normally distributed random variable x,
by reformulating C to a deterministic constraint C'.

A Prob. Distribution of x

C'(X) zIC()Ac) - A

—

Chance constraint: B — A —)C(X) X

Risk < 1%

Illll Massachusetts Institute of Technology B
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Risk-Allocation Approach: Overview

Chance constraint:

Risk < 1%

dea 2: Generalize to a single constraint over an
N-dimensional random variable,

by projecting its distribution onto the axis
perpendicular to the constraint boundary.

80
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PENS e

Risk-Allocation Approach: Overview

Chance constraint:

Risk < 1%

<8 ¢

ldea 3: Generalize to a joint chance-constraint
over multiple constraints C,, C2, by distributing risk.

81
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PENS e

Risk-Allocation Approach: Overview

Chance constraint:

Risk < 1%

< 8y ==
1 C <6,

Find a solution such that:
1. Each constraint C, takes less than 6, risk.

2. 5.6<1%

Note: this bound is derived from Boole’s inequality.
82
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li=h=

Risk-Allocation Approach: Overview

Chance constraint:

Risk < 1%

< 8y ==
1 C <6,

Real probability
of failure.

Using Boole’s inequality, /
10/0 PI‘[Fl] B Pr[Fz] = Pr[Fl U Fz]

where F; is an event in which C; is violated.

83
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PENS e

Risk-Allocation Approach: Conservatism

Chance constraint:

Risk < 1%

<8 ¢

Conservatism = p(x)dx

Significantly less conservative than the elliptic approximation,
especially in a high-dimensional problem.

o s h -
Al
I“" Massachusetts Institute of Technology AL



PEhs

‘Managing Vehicles using Risk Allocation

_Personal Transportation System

1 ati

li=in=

Model-based Embedded & Robotic Systems

Ono & Williams, JAIR13
Yu & Williams, IJCAI13 s

o s
lll l l Massachusetts Institute of Technology 85 TCsAIL
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Outline

 Goal-directed, Model-Predictive Control
e Stochastic Optimization

* |terative Risk Allocation

* Optimal Risk Allocation

* Appendix: Multi-agent Risk Allocation

o s h -
Ll 2
Ill Il massachusetts Institute of Technology AL



Example: Race Car Path Planning

* A race car driver wants
to go from the start to
Planned Path the goal as fast as

- X Actual Path possible.

* Actual path may differ
from the planned path
due to uncertainty.

* Crashing into the wall
may Kill the driver.

Driver wants a
probabilistic guarantee:

P(crash) < 0.1%

|I|il- Massachusetts Institute of Technology 87 - C h a n Ce CO n Stra i n t n ‘rﬁjﬁ\ﬂ

CCCCC
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ldea: Plan Nominal Path
M=Rs using Safety Margin

/% Problem

e Planned Path Find the fastest path to the
) Path | goal, while limiting the
/ probability of crash Risk bound

S AL

throughout the race t0(0.1 %:5
Approach: -
1. Set safety margin that

guarantees that the risk
bound is satisfied.

2. Plan optimal nominal path
within safety margin.

~ Actua

Simple Method:
s Uniform risk allocation. &

I o s
l I | ' Massachusetts Institute of Technology TCsAIL



Not All Safety Margins are Equal

Uniform width

Goal

0

Start

Safety margin

Longer path

JTppEy
Illll Massachusetts Institute of Technology

Non-uniform width

Goal

Safety margin

Start

Shorter path

89




ldea: Design the Optimal Safety Margin

= by Allocating Risk

» Added risk at the corner
shortens the path more
than the same amount of
risk at the straightaway.
— Sensitivity of path length

to changes inrisk is
higher near the corner.

— Find an allocation of risk to
constraints that results in
the best feasible solution.

I o s
I l" Massachusetts Institute of Technology

Corner

Narrow safety margin
= higher risk

90

Straightaway
Wide safety margin
= lower risk

CCCCC



Iteratlve Risk Allocation (IRA) Algorithm

==

*Descent algorithm

j*(ao) = j*(61) = j*(ﬁz)

Iterat|o> ii

 Starts from a suboptimal risk allocation.
* Improves allocation at each iteration.
* But does not guarantee convergence. a0y

i - 1
Massachusetts Institute of Technology &4 ... A




lterative Risk Allocation Algorithm

!IHIIT=IH_E\§I 0 & Robotic §

Goal

Safety margin

o s
lll l l Massachusetts Institute of Technology

®
Start

L

Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best
available path given the
current risk allocation.

Decrease the risk where

the constraint is 1nactive.

Increase the risk where
the constraint 1s active.

End loop

92
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lterative Risk Allocation Algorithm

l=ih=

Model-based Embedded & Robotic Systems

No gap = Constraint is active.

\
\

Goal

Best path for
safety margin.

Safety margin

Start

Gap = constraint is inactive.

o s
lll l I Massachusetts Institute of Technology

Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best
available path given the
current risk allocation.

Decrease the risk where
the constraint is 1nactive.

Increase the risk where
the constraint 1s active.

End loop

93




lterative Risk Allocation Algorithm

!nld!lﬁeld_i\m%en & Robotic Systems

No gap = Constraint is active.

\
\

Safety margin

Start

Gap = constraint is inactive.

o s
III l I Massachusetts Institute of Technology

Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best
available path given the
current risk allocation.

Decrease the risk where

the constraint is 1nactive.

Increase the risk where
the constraint 1s active.

End loop

94
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lterative Risk Allocation Algorithm

!nld!lﬁeld_i\m%en & Robotic Systems

No gap = Constraint is active.

\
\

Safety margin

Start

Gap = constraint is inactive.

o s
III l I Massachusetts Institute of Technology

Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best
available path given the
current risk allocation.

Decrease the risk where

the constraint is 1nactive.

Increase the risk where
the constraint 1s active.

End loop

95
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lterative Risk Allocation Algorithm

Algorithm IRA
1 Initialize with arbitrary risk
allocation.
2 Loop
3 Compute the best
available path given the
current risk allocation.
4 Decrease the risk where
the constraint is inactive.
Safety margin o 5 Increase th;: risk Where
art the constraint 1s active.
6 End loop

96
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lterative Risk Allocation Algorithm

N=h=

Model-based Embedded & Robotic Systems

Safety margin Start

What Remains:

« Mathematical formulation:
Reformulating stochastic

to deterministic constraints.

s
III ' I Massachusetts Institute of Technology

1

|9

6

Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best
available path given the
current risk allocation.

Decrease the risk where
the constraint is 1nactive.

Increase the risk where
the constraint 1s active.

End loop

97




Comparison

l=ih=

Model-based Embedded & Robotic Systems

 Approaches

— Elliptic Approximation: uses very conservative approximation of
joint chance constraint.

— Sampling: approximates probability distribution by samples.

* Risk allocation results in near-optimal solution with
significantly less computation time than sampling.

A=0.1

Risk allocation Elllptlcallset Sampling
conversion
Resultlng.prot_)abllllty of 0.097 0.0022
constraint violation 2 0x107
Objective function value 3.15 5.26 3.76
Computation time [sec] 3.38 1.76 1.41x10*

L 11 0 0.0001 0 0.0001 0
J=2thH A= B= z, = z, = T=20,A=0.1
&' -05 0 0.03| " 0 0.0001 0 0.0001

Mir - 08 A
Massachusetts Institute of Technology v . T ran



Test bed: Connected Sustainable Home
m=is F. Casalegno & B. Mitchell, MIT Mobile Experlence Lab

Model-has dEIIIIIIII Robotic System:

« Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.
* Objective: Minimize energy cost.

» Uncertainty: Solar input, outside temp, energy supply, occupancy.

* Risk: Resident goals not satisfied; occupant uncomfortable.

o s
III l I Massachusetts Institute of Technology 99



IRA-RMPC for Dynamic Window

l=ih=

Model-based Embedded & Robotic Systems

Outside temperature

A6am 12pm 6pm
g “g’, | Heat the room using sunlight...
T| S
0| 9 imal temperatur
Q k= S ———————————meeetPEE mms EEn EEn s EEn Ean D Ean Ean e EaRGme s Eam Em Em
Ar.g
il
E| 5
glo° ...S0 that the temperature will stay within the
B comfortable range WITHOUT using heaters in the night

o s
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Successive Risk Allocations for IRA-RMPC

l=ih=

Model-based Embedded & Robotic Systems

(a) First Iteration (b) Second Iteration

N

8am 12pm 5 pm 12pr;1

W @ Safety margin
—— ! Optimal plan at current iteration
-------- : Optimal plan at previous iteration

Takes risk of violating resident constraints where
largest energy savings are possible.

o s
lll l I Massachusetts Institute of Technology



Successive Risk Allocations for IRA-RMPC

l=ih=

Model-based Embedded & Robotic Systems

(a) First Iteration (b) Second Iteration

30°C

25°C
22°C

20°C [\
18°C

N

0 am 8am 12pm 5 pm 12pr;1

W @ Safety margin
—— ! Optimal plan at current iteration
-------- : Optimal plan at previous iteration

Given chance-constrained Qualitative State Plan (CC-QSP):
1. (Re-)allocates risk.

2. Reformulates to deterministic QSP and calls Sulu.

3. Repeats.

o s
lll l l Massachusetts Institute of Technology




l=ih=

Model-based Embedded & Robotic Systems

Temperature (C)

35

W
o

N
6)]

N
o
N

''''' p—Sulu
— = Sulu
~—4~ PID

T

*
| v/
/7
I/./
- — =
/[ — /
—
'7|L

15

I o s
I l" Massachusetts Institute of Technology

Time (hours)

20

A H
Iy h‘ 'sj|
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Improvement in Comfort

Winter | Summer
Energy , Violation Rate Energy | Violation Rate
p-Sulu | 1.9379 x 10* 0.000 " 3.4729 x 10* 0
Sulu | 1.6506 x 10* | 0.297 |, - -
PID | 3.9783 x 10* : 0 ! 4.1731 x 10* 0
Spring Autumn
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 3.3707 x 10* 0 || 3.8181 x 10* 0
Sulu | 3.0954 x 10* 0.308 || 3.6780 x 10* 0.334
PID | 3.9816 x 10* 0 || 3.9955 x 104 0

* Deterministic control (Sulu): 30% comfort violations.
* Robust control (p-Sulu): near 0% violations.

III. fEEy
Il massachusetts Institute of Technology

CCCCC



Outline

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

» Goal-directed, Model-Predictive Control
« Stochastic Optimization
 [terative Risk Allocation
* Optimal Risk Allocation

— Stochastic Linear Programs

— Disjunctive Linear Programs
— Probabilistic Sulu

* Appendix: Multi-agent Risk Allocation

JTppEy
IIIII Massachusetts Institute of Technology

CCCCC



Finding Optimal Risk Allocations

Given that the Boole’s inequality approximation
has been performed.

|dea:
1. Formulate optimal risk allocation as a
stochastic program.

2. Map to deterministic (non-)convex program,
with risk and control variables as decision

variables.
3. Solve exactly using deterministic solver.

o s
III l I Massachusetts Institute of Technology




Problems

Fixed schedule r=5
=3 K {=

Il Fixed schedule \

r=1 /Goal

e
Maypoint Waypoint
Start Start
Convex, single agent Convex, -agent
\/
Fixed schedule Simple temporal —> [2 4]
\ constraints
[=35 \L
~®
e
13
F—1 Goal [13] Goal
8 J
Obstacle Obstacle
Waypoint Waypoint
Start Start [0 5]

Py . . ’W__r
L [T convex, single agent Non-convex, schedule, single agent



FH Optimal Control

!llld!lﬁeld_i\m%eﬂ & Robotic Systems
Instance of a
. Stochastic Linear Program
min J(ul,T ) with Gaussian Noise
T .
ul:TE
Sl o

Stochastic dynamics tAO Xl = Axt + But + W,

- Risk bound

- (Upper bound of the
W, N (O, )) t) probability of failure)

_ Assumption: A< 0.5
Xy ~ N(xp,2

TN : \

Chance constraint Prl A A htiTxt < gtl > ] —'\'A )
t=1i=1

h— - ;rﬁ‘h L
10

o s
lll Il massachusetts Institute of Technology 108 S esail



Conversion of Joint Chance Constraint

!Idllrzld_i\ﬁl 0 & Robotic Systems

-7 N -

Joint chance Prl A A hiTx < gi >]-A
constraint i=0j=0 © ¢ t
- Requires computation of complex integral over Gaussian.

N

A set of individual chance constraints.
- Each involves one hard constraint,
over a Gaussian distribution.

)’

A set of state constraints.

o s »
lll Il massachusetts Institute of Technology 109 Al



Decomposition of Joint Chance Constraint

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic Systems

-1 N 7
Joint chance Prl A A thx < gz >1-A
constraint i=0j=0 1 t

'

Use Boole’s inequality (union bound)

Pr| AU B |<Pr{ 4|+ Pr{B]

o s h -
Ill Il massachusetts Institute of Technology 110 = ceail



Decomposition of Joint Chance Constraint

-7 N -

Jointchance  Pr| A A h’T <g'|[=1- A
constraint =0 i=0 fJConstant/
) Upper bound of the
probability of violating
Is implied by: constraint
Individual ch TN( [T ] )
ndividual chance i CQiN
< >
constraints tAl /_\1 Prif x, =g, |=1 5 L)

z 5; <A Variable /

Risk allocation: Upper bound of the
probability of violating

1 2
0= \_(51 . 51 . éévJ T N ith constraint at time 1.

/\/\51_0

o s rrh [‘D, L]
Ill Il massachusetts Institute of Technology t 1 l 1 11 1 H r“c Sl




Decomposition of Joint Chance Constraint

min J(U)
ulTEU
st
A X = Ax, + Bu, +w,
[=
W, ~ N(O,Zt)

xO ~ N(xoﬂzx,O)

-7 N -

Joint chance Prl A A th gl >1-A
constraint =0 =0 J

o Al T
lll Il massachusetts Institute of Technology 112 e



Decomposition of Joint Chance Constraint

-——

“min min J(U)

\\\ 6 ulTEU
Risk allocation = T-I
optimization ANX = Axt +But +w,
t=0
t ~ N(O,Zt)

Xy ™ N(Xoazx,o)
Individual c_:hance A /\PI’VIZTX <g J>1 (51

constraints
Sorea

o s b
l“" Massachusetts Institute of Technology S esail




Conversion to Deterministic Constraint

!IdIIT= ﬁﬁlen & Robotic Systems

Chance constraint PI’Vl:TXt < g;JZ 1 _ 5;’

Univariate Gaussian distribution

A Prob. Distribution of /' x,

h%‘g; g,

o s
Ill Il massachusetts Institute of Technology il



Conversion to Deterministic Constraint

!IdIIT= Iﬂ_}lﬁleﬂ & Robotic Systems

Chance constraint Pr\_thxt < g;JZ 1 _ 5;’

Deterministic constraint <> ]’l;T)_C < g; — mtl (5;)

{
A Prob. Distribution of /' x,

S AV

h%‘g: g,

o s
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Conversion to Deterministic Constraint

!Idllrzﬁﬁl il & Robotic Syst

Chance constraint PI’VlZT}Ct < g;JZ 1 - 5;‘

Deterministic constraint <> h;T)?t < g; — mtl (5;)

where , - . | .
m(8')=—2h"s herf (26 -1)
’ (Inverse of cdf of Gaussian)

Xy ™ ]\t/:g)_czﬂzx,t)
S =Y AZ (4") +Z.

[Charnes et. al. 1959] /i"

[Ty
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Conversion to Deterministic Constraint

!Idllrzﬁﬁl 0 & Robotic Systems

Chance constraint PI’VlZT}Ct < g;JZ 1 _ 5;’

Deterministic constraint <> h;T)?t < g; — mtl (5;)

_a _ T Safety Margin
f= SE Nominal path =FMean state
t=4

{ s

5, A
m2(2< ﬁ
ml(él/

[Charnes et. al. 1959] 'in

o s
lll Il massachusetts Institute of Technology 117 il



Conversion to Deterministic Constraint

minmin J(u,.; )

& u,€U"
st
A X, =Ax, +Bu, +w
=0
tNN(Oazt)

xO ~ N(xoﬂzx,O)

T 1
Individual chance 5 A PI‘[ ’T gi ]2 - (Si
constraints t=1i=1 g t

25; <A

o s P L
lll Il massachusetts institute of Technology 118 k “lc sail



Conversion to Deterministic Constraint

minmin J ()
& u,€U"

S.t. T_l

= Ax + Bu,

t=0

/T\ /[\h’T_ <g - ((Si)

t=11i=1

25; <A

o s b
lll Il massachusetts Institute of Technology 119 S esail



Conversion to Deterministic Constraint

minmin ,.
3 7 U’ Conveéx
S.t.
> I
0 0.5 1.0§’
T ] .T . . .
11 — l l l
t/=\1i/=\1ht xt = gt _mt (ét )

Convex if 6 < 0.5

25; <A

o s
Ill Il massachusetts Institute of Technology il



Outline

!nld!lﬁeld_i\m%en & Robotic Systems

 Goal-directed, Model-Predictive Control
« Stochastic Optimization
* [terative Risk Allocation

* Optimal Risk Allocation
— Stochastic Linear Programs
— Disjunctive Linear Programs
— Probabilistic Sulu

Multi-agent Risk Allocation

o s
III l I Massachusetts Institute of Technology
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Problems

!I.IJ Fixed schedule \

rd

Maypoint

Start

=1 /Goal

Convex, single agent

Fixed schedule =5
t=3 K {=

Waypoint

Start

Convex, -agent

N~

l‘=1‘

Obstacle
Waypoint

Start

Simple temporal —> [2 4]

constraints
v S
13
[ ] Goal

4

Waypoint

Obstacle

Start [O 5]

o L [T convey, single agent

Non-convex,

schedule, single a@éht



Non-Convex Problem Formulation

P=nG e
Fixed schedule \
Obstacle
%aypoint
min J/(ULN,C_ULN) Start
Uqi.nyeUN

S.t. Vte T, x4 = Arxy + Bruy + wy

/\ Pr /\ \/ hZi,jX < Geij| = 1—A,

ceC _iEIC(s JE€Tec.i

Non-convex state constraint

o s
Ill | ' Massachusetts Instituteof Technology P



Problem Formulation:

l=h=

Model-based Embedded & Roboetic Systems

Convex state constraints

min J' (u,)
urEU"

r N

t=1n=1

s.t. Pr[/\ AR x sgf] =1-A

v Risk allocation

Convex Program

. I
min J'(u,)
ul:TEU
T N -
ni — n n
st. NANh X =g —-m,
t=1n=1
T',N
o' =A
t=1,n=1

i Massachusetts Institute of Technology

124

A

Chance Constraint

chance constraints

)

A set of
chance constraints

Nl

A set of
state constraints

CCCCC



Problem Formulation:

l=h=

Model-based Embedded & Robotic Systems

Chance Constraint

Convex state constraints

Non-convex state constraints

min J' (u,)
ul:TEUT

> =
T< X

- T
N
t=Iln

st. Pr

1 k=1

" x, < gt”’k] =1-A

Risk allocation

-\ /- Risk selection

: i
min J' (u,)
urr €U
TN o
s.t. Pr[/\ AR X, sgt”‘] =1-A
t=1n=I1
\/ Risk allocation
Convex Program
- i
min J'(u,)
ul:TEU
TN
st. AANR"X =g —mt”(ét”)
t=1n=1
T,.N
0" =A
t=1,n=1

Convex Disjunctive Program

. I
min J'(u,)
ur €U
A kT k k
st. A AN|VIRY X =g -m)” (
t=1 n=lk=

T',N

Eé”sA

t
t=1,n=1

0TIl Massachusetts Institute of Technology

19K
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Decomposition Through Risk Selection

M=hsS

odel-based Embedded & Robotic Systems

' N K o i
Pria A vh™x sg™|=z1-A
t=1n=1k=1

Nk kT k k
n,kT — n n, n
A A Vht X, =8 —m ((St)
t=1n=1k=1
T,N
o' =A
. t=I1,n=1 PryRyl
lll Il massachusetts Institute of Technology 126 H "‘c sail



Decomposition Through Risk Selection

N=hs

odel-based Embedded & Robetic Systems

Pr[A v B] = Pr[A] A
Pr[A v B] = Pr[B]

T N K
n,k n,k n,k
(PA]=1-AvPi{Bl=1-A)  AANETE =g -m
= Pr[AvB]=1-A ’NénSA
197 t=1,n=1 At

o s
lll Il massachusetts Institute of Technology “esalL



Solution: Branch and Bound
M=is for a Convex Disjunctive Program

odel-based Embedded & Robotic Systems

Example: 7 N K B

kT
ANV RX
t=1 n=1 k=1

= (G, VL) A (G, v(Ey)

< g -m* (o))

t

T=2,N=1K=2 C,=¥"% =g"*-m*")

t

Convex Disjunctive Programming
min J'(u,)
“1:TEUT
TR kT k k
st. AANVR"Xx <sg"-m (5[’)
t=1n=1k=1
T,N
0" =A
o t=1,n=1
lllll Massachusetts Institute of Technology 12 TTCSAIL




Stochastic DLP Branch and Bound

ed & Robotic Systems

o S

Repeat until no clauses left:
1. Select clause.
2. Split on disjuncts.

(G, vCL) A (G, v ()
C, A (G, v () C, AN (G, v(Ey,)
G, AG, C, NG, C, Gy, C, AC,,

Convex Optimization Problems

.-
lll l ' Massachusetts Institute of Technology 129
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Stochastic DLP Branch and Bound

1 - 7 ~N
Repeat until no clauses left: Fixed schedule \
1. Select clause. & t=
L®

2. Split on disjuncts.
t=1 / Goal
(G v ) A (C ﬁgm
N
Start
/ Convex, single agent )

C, A (G, v () NG, v )

Cll A CZI C12 A C22

f

o s
Ill " Massachusetts Institute of Technology 130 c s&x : L
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. Bound Through Convex Relaxation

—
Model-based Embedded & Robotic Systems

 Bound: Remove all disjunctive clauses [Li & Williams 2005].
* |ssue: Computing bound is slow!!
« Cause: Sub-problems include constraints.

o s
lll Il massachusetts Institute of Technology 131 H TCSAIL



MEhE.

mt

Subproblems of BnB (non-linear)

minJ (4, )

Uyt

S. 1.

OstsVT—l X,,, =Ax, + Bu, +w,
J(O’ Zt ) Nonlinear
]('XO > 2x,O ) i JZ\

e
7

I [Ty
l l" Massachusetts Institute of Technol

0.5

e i(t) ‘ i(t)(
14" X, = & '“\mt

N-__—’

A, 0, =0

4

=~
Il
|

132
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Subproblems of BnB (non-linear)

=iz e
minJ (u,.; )
Uuy.r
st. YV x_,=Ax,+Bu +w,
O<t<T-1
~ N(0. X2
Fixed Risk Wi ( ’ t) Nonlinear
Relaxation ~ N(x09 ) L ’Z
T ,
5 — A z(t)T— i() | i(t) |
4 l‘/=\ h gt \\ (éf ),'
! o )
—=/N, 0, =0
|

.-
|||" Massachusetts Institute of Technology 133
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Fixed Risk Relaxation: Intuition

N=hs

odel-based Embedded & Robetic Systems

Original problem FRR

Sets safety margin for all
constraints to max risk A.

Goal Goal

Safety margin FRR Safety margin

Start Start

* Results in an infeasible solution to the original problem.
* Gives lower bound for the cost of the original problem.

JTppEy
Illll Massachusetts Institute of Technology 134 Y



Approach Fixed Risk Relaxation (FRR)

M=ih=
o FRR. linear relaxation of each subproblem.
— Has only linear constraints (typically LP / QP).
— Gives lower bound on the cost of sub-problem.

— May generate infeasible solution to original problem.

JTppEy
M massachusetts institute of Technology 3% e



_ Fixed Risk Relaxation (Linear)

Embedded & Robotic Systems

minJ ()
Ui.r

st. V. x, =Ax +Bu +w,

O<t<T-1

Fixed Risk t - N(?, Zt)
Relaxation X, ~ N(XO : 2 ) ’

ét = A ! hz(t)T— i(t) ! g z(t)(A)

=&

t—l

N

*All constraints are linear (FRR is typically LP or QP).

|||" ) 136
" Massachusetts Institute of Technology
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Algorithm: BnB + FRRs

« Solve FRRs of subproblems to reduce computation time.

» Solve subproblem without relaxation at unpruned leaf nodes to
obtain exact solution.

 Significantly reduces computation time without compromising
optimality. y

Prune if
(FRR cost) > incumbent
Cll

_ Prune if
Optimal (FRR cost) > incumbent
solution

GinGy GG

o
III l I Massachusetts Institute of Technology

N=hs
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Outline

» Goal-directed, Model-Predictive Control
« Stochastic Optimization
 [terative Risk Allocation
Optimal Risk Allocation

— Stochastic Linear Programs
— Disjunctive Linear Programs
— Probabilistic Sulu

* Appendix: Multi-agent Risk Allocation

N=hs

odel-based Embedded & Robetic Systems

JTppEy
Illll Massachusetts Institute of Technology




!I.|J Fixed schedule

&

=1

rd

Start

Maypoint

\t:

Problems

Goal

Convex, single agent

Fixed schedule

r=1

0=

.
/®

Start

%aypoint

Fixed schedule r=5
=3 B t=

Waypoint

Start

Obstacle

Convex, -agent

L [T convex, single agent

Simple temporal —> [2 4]

constraints
/ =
13
[ ] Goal

4

Waypoint

Obstacle

Start [O 5]

Non-convex,

o A
schedule, single ag:

At




Problem Formulation

-
Simple temporal —> [2 4]
constraints
Non-convex, flexible schedule / N
[13]
Goal
W
Obstacle
Waypoint
mln'_ J(’U,]_;N, 'f'_BltNa S Start [O 5]
Uq.NEUN|sESE
s k. \vas — T = Ay + Biuy + fwt
Flexible /\ /\ \/ < > L
schedule Pr hc )2 JX Jeij| =1 Ac
ceC K s) J€Te,i i

o s
(Fal/stls
Ill | ' Massachusetts Institute of Technology CSA : L



Two-layer Approach

N=h=

Model-based Embedded & Roboetic Systems

Outer-loop: Schedule optimization

function p-Sulu (ccgsp)
incumbent < INF;
for s€SF
(J*, U¥) < innerLoop (s, ccgsp)
if J* < incumbent
incumbent <« J*;
solution < (s,
endif
endfor
return solution;

¥
Inner-loop: fixed schedule CC-QSP as a Stochastic-DLP

function innerLoop (s, ccgsp)
Solve chance-constrained optimal control with s and ccqgsp;
U* <« Optimal control sequence ;
J* < Optimal objective value;

return (J*, U¥*); NIRA Algorithm

141 (dlcke

CCCCC
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Results 1: Personal Transport Scenario

li=h=
Moseiaseacinesiess [() 8 4,5 [4.5 7.5] [1.8 10.2]

Remain in @ End in
[Scenic region] [KBED]

[0 15] /@
Remain in ]

safe region

e e e .8 =0.01
A T R R NCE -0 =0.001

..................

.....................................

0903 mc1

0§02 2

04 R

R 1234567 8 910111213141516
' ; Time step

l
16 142 dohiy

CCCCC



L Results 2: 2 Obstacles, 3 Goals

Model-based Embedded & Robotic Systems [2.8 6.1]
[m [4.3 11.1]
Go through Go through
[Wyptl] [Wypt2]

[0 15]
Remain in
[safe region] c 0 =0.1

[0 o]

Start in
[Start]

|I|il- Massachusett



Performance Improvement
n=r= Using Boosting Tree-based Regression

Model-based Embedded & Roboetic Systems

Scenario # 1 2 3 4
NIRA 135.21 219.76 79.99 80.15
NIRA w/ Boost-LP 3.84 415 3.03 2.93

‘Both algorithms always result in the same solution

104: T T T

NIRA w/ Boost-LP ) _4  Scenaros:

- #1: 2 obstacles and no waypoint
, 1 #2: 2 obstacles and 2 waypoints
- 1 #3: 1 obstacle and 1 waypoint,
. trained with different disturbance
E—"" 5 level
: , 1 #4: 1 obstacle with 1 waypoint,
' trained with different control
constraints

-

(=]
[

LAl |

\

1

-
o..
YT
+
1

1 — : * Banerjee, A. G., & Roy, N. (2010). Learning
[ l Solutions of Similar Linear Programming
L L Problems using Boosting Trees. CSAIL
3 4 5  technical report MIT-CSAIL-TR-2010-045
No. of obstacles
M,‘q

o s
lll | ' Massachusetts Institute of Technology 144 !' tL ;Al L

Branch and bound solution computation time (s)
3
A
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—
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P-Sulu Performing

I o s
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I'_IJ Fixed schedule \
t =

L2

|

f=1 Goa

o
Maypoint Waypoint
Start
Convex, single agent Convex, -agent

o

Fixed schedule Simple temporal —> [2 4]
\ constraints
/ S
13
F—1 Goal [13] Goal

ry

Obstacle Obstacle
Waypoint Waypoint

Start Start [0 5]

Py . . ’W__r
L [T convex, single agent Non-convex, schedule, single agent



Facilitating Sustainability
M=hs ‘ Requi

Model-based Embedded & Robetic Systems

eS

. o A t

Anaerobic
Digester

s
III " Massachusetts Institute of Technology 147



Risk Allocation

N=hs

odel-based Embedded & Robetic Systems

T (3)=J ()= J (3,)

Iteratio> ii

1. IRA: reallocates risk manually.
2. CRANRA: standard solver reallocates risk.

III“ Massachusetts Institute of Technology 148 : é%:x n




Risk-bounded Planning

||!J Fixed schedule \ Fixed schedule ¢=5
| = t=3 L9 =
Lo ’_/ e
Goal
"y /Goal /
e
Maypoint Waypoint
Start Start
Convex, single agent Convex, -agent

&

Fixed schedule Simple temporal —> [2 4]
\ constraints
/ S
13
F—1 Goal [13] Goal

ry

Obstacle Obstacle
Waypoint Waypoint

Start Start [0 5]

L [T convex, single agent Non-convex, schedule, single agent



Optimization Problems

!I_|J Fixed schedule \

r=1 /Goal

rd

Maypoint

Start

Convex chance-constrained opt.

Fixed schedule r=5
t=3 L9 t=

Waypoint

Start

< )
N~
Fixed schedule\
r=5
~0
Goal

l‘=1‘

Obstacle
Waypoint

Start

chance-constrained opt

convex, chance-constrained opt

Simple temporal —> [2 4]

constraints
v S
13
[ ] Goal

4

Waypoint

Obstacle

Start [O 5]

Chance-constrained

CSAIL



Risk Allocation Algorithms

!I!J Fixed schedule \

r=1 /Goal

rd

Maypoint

Start

IRA (Iterative Risk Allocation)

N )

Fixed schedule r=5
t=3 L9 t=

Waypoint

Start

MIRA (Market-based IRA)

N~

Fixed schedule\
f=

Goal
r=1

ry

Obstacle
Waypoint

Start

Simple temporal —> [2 4]

constraints
v S
13
[ ] Goal

4

Waypoint

Obstacle

Start [O 5]

Illi IRA (Non-convex Risk Allocation)

p-Sulu (probabilistic Sulu)

CCCCC



Outline

!IHIIT=IH_E\§I 0 & Robotic §

* Model-Predictive Control

« Stochastic Optimization

* |terative Risk Allocation

Optimal Risk Allocation

* Appendix: Multi-agent Risk Allocation

o s
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=R, e Algorithms

Fixed schedule Fixed schedule  ¢=35
\ {= t=3
L2
t=1 /Goal
o
Maypoint Waypoint
Start Start
IRA (Iterative Risk Allocation) MIRA (Market-based IRA)
AN )
A

Fixed schedule Simple temporal —> [2 4]
\ constraints
t=5 ‘L
~®
N

Goal [1 3] Goal

=1 oa
~ P
Obstacle Obstacle
Waypoint Waypoint

Start Start [0 5]

I'li IRA (Non-convex Risk Allocation) p-Sulu (probabilistic Sulu) (bl



!IIIIIF.II_E\EGH & Rohoti

Problem Formulation for Multi-agent

Single agent ; Multi-agent

minJ(U) min, ZJ"(U")

Ueu Uteut &
N T z I Ny : :

S.L. Pr[Alhnngn}zl—A s.t. Pr[/\ Ah;TXlsg;]zl—A
n= i=l n=1

i: Index of agents
I agents, NV state constraints for i 'th agent

[ x) ) (u; )
X=|:|U-=|:

7 7 )

[Ty , L
lll Il massachusetts Institute of Technology 154 il



!IIIII§.II_E\§1W & Rohoti

Problem Formulation for Multi-agent

Single agent e Multi-agent

minJ(U) p}lirll_l:z:Ji(Ui)

veu U el = :
N T T I Ny : :

S.L. Pr[Alhnngn]zl—A s.t. Pr[/\ Ah;TXlsg;]zl—A
n= i=l n=1

i: Index of agents
I agents, NV state constraints for i 'th agent

e Minimize (xli\ /uli\
X' =] : U' =
¥ \ur

o s P L
lll Il massachusetts Institute of Technology 155 il



!IIIII§.II_E\§1W & Rohoti

Problem Formulation for Multi-agent

Single agent ; Multi-agent
minJ(U) Iglinl.,zJ"(U")
UEU U "eU" =

I'N

N / | ¢ . . .
s.t. Pr[/\lhnTng;}zl—A St Pr[:A.Ah;TXZSg;}ZI_A

li=1'n=1

i: Index of agents

I agents, NV state constraints for i 'th agent
* Minimize aggregate cost
« Bound the probability that satisfy

— System fails if one agent violates constraints.

I o s i “D ?]/L
l l" Massachusetts Institute of Technology 156 S esail



==

Model-hased Embedded & Robotic Systems

Risk Allocation between Agents

Need to optimize
since sensitivity
to risk is different

User %

specifies
System’s risk bound: 0.1%

0.02%| -+

0.08%
"

Risk is distributed among agents

Individual System’s
risk bounds = risk bound .

Multi-agent

I N,

s.t. Pr[/\ ARTX sg;] =1-A

i=1 n=1

AV

Decomposed, deterministic form
I

min J'(U)

1.7 Il
uteut oy &

st. AnETX ' <g —mi (o)

CCCCC



BENS..

~“Approach: Decentralized Optimization

User risk by . :
specifying the risk bound Each agent is an

iIndependent decision maker
% « Communicates with others

* Finds globally optimal
System’s risk bound: 0.1% solution through

* |nspired by an economic
process tatonnement

— Risk = resource traded in a
market

— Each agent has a demand for

risk as a function of the price
Demands Supply of risk

2[ for risk ] = of risk o

158 e

CCCCC

0.02%| -+

0.08%

o et

3
Agents risk




Market-based Solution to Distributed Risk Allocation
=i (Dual Decomposition)

Model-based Embedded & Robotic Systems

@g)i System operator specifies the risk bound (supply)
CB\’//

\ Iteratively set price

using Tatonnement.

Price

_— Agent 2's demand
Agent 1's demand ——>

/p* -~ N\ - Dy, Hy Aggregate demand

Equilibrium price

———

>
D¥ D*y 0.1% Quantity
Y

Risk allocated to Agent 1 Risk allocated to Agent 2

o s
lll Il massachusetts Institute of Technology 159 H TCSAIL



Market-based lterative Risk Allocation Algorithm

Central Module

P’ sz(p) A
Root finding

Agent 1
min J(U")+ pD' |€&——

U'eu'.p
Convex optimization

Agent 2
min J(U?)+ pD’  |g——0u

U*eu?.D
Convex optimization

I o s
l I l ' Massachusetts Institute of Technology

CCCCC



Dual Decomposition

lldlll IIEmIlIIIIII Robotic Systems

Centralized Optimization
(decomposed, deterministic form)

min
UlIEUII 511]{[ -

J(U)

I T

AN A JC
i=1t=1 ol

s.t. = A'x + B'u

/\/\hZTX’<gn ’(

i=1 n=1

[ N
Y N o,sA
=1 n=1

Convex optimization

Solved by

I o s
l I l ' Massachusetts Institute of Technology

161

De the i’th agent

Risk taken by = Demand for risk
from i’th agent

i’'th agent: ( al)
N
min J'(U") 25;
U'EU’ Oy Dual variable n=1

T = Pr|ce of risk

I—i I
s.t. x,,,=AX +Bu,

t= 1

/\h’TX’<gn ’(5i)

I’l n

Convex optimization

8" (p):Optimal solution given p

e (Dual)

CCCCC



Properties of MIRA

of decentralized solution
— If the centralized optimization has an optimal solution, it is
also an optimal solution for the decentralized optimization
of decentralized solution

— If the decentralized optimization has an optimal solution, it
Is also an optimal solution for the centralized solution

of MIRA

— MIRA is guaranteed to converge to an optimal solution if it
exists

.. MIRA is guaranteed to converge to the same
solution as the centralized approach

I o s ‘ -
I l" Massachusetts Institute of Technology 162 il



Proofs

!llld!lﬁelﬂ_i\mﬁleﬂ & Robotic Sys

o Existence The of

_ _ with the KKT conditions of
* Optimality centralized optimization

decentralized optimization coincide

« Convergence ‘. Demand functions are
; Brent’'s method is
guaranteed to converge for
continuous functions

o s
lllll Massachusetts Institute of Technology 163
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Sketch of Proof

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic Systems

! \ A . p:dual variables
KKT stationary oL _" /Y dm; \H_/-\n p

condition: 852 V' d i L

Centralized Optimizati
min
Ul:leUl:] 51:] . 20
> 1IN?
(- -

Tt
CCCCC

I o s
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Sketch of Proof

!:ﬂ!lﬁ&lﬂ_i\m%eﬂ & Robotic Systems

KKT stationary 0L i dm, s

condition: aéi ddl f
MIRA (each age-nt-) -'- - -

mm J (U)+p2c5

U'et’ 5’

\

~_n_l__/

S.L. h'X'<g —m.(5))

T A n
l l" Massachusetts Institute of Technology 165 sl
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Sketch of Proof

— ————=
KKT comp. ,{ (1 l. ) |
slackness :p E én -A|=0,
condition: v\ i=l n=1 )_ _ _/I

Centrallz[ed Optimization

min N J'(U")

LN 1=1

S.t. thXl < gn m ((5 )

I o s
l l" Massachusetts Institute of Technol

CCCCC



. Sketch of Proof
I_I\_ tic Systems
KKT comp. :l
slackness P
condition: I\\i=1 7=l ]

» Special case with p=0 is handled separately

I Ll
l l" Massachusetts Institute of Technology 167
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Proofs

!llld!lﬁelﬂ_i\mﬁleﬂ & Robotic Sys

« Existence

—

.. The of
decentralized optimization coincide
with the KKT conditions of

* Optimality | centralized optimization

*|Convergence ‘. Demand functions are

; Brent’'s method is
guaranteed to converge for
continuous functions

o s P L
lll Il massachusetts institute of Technology 168 B



Deflnltlon Cost of Risk for i'th Agent

I'I—I\_
J (Ai ) = min J! (U ’)
U’ 520
s.t. 53;'“ — Al_’ + B'u!
Illlll S < ullld\

il X <Jn—77? (08)
1\'1
Z 6 < A
n—=1

J™*(A") : minimum cost the agent can achieve
when it is allowed to take up to A?of risk in total

o s N L,
Ill Il massachusetts Institute of Technology 169 ' “c sail
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Each Agent’'s Optimization Problem

min
U’ si

1:N? —

N*
J(U)+p> o,

>0 n=1
5 1 = 1,1
S.t. th — A’z + B'u!
< ’u,t < u’

111 n — — Imax

h' X < g —m’(5")
(t:omT—l,n:lmNi)

Massachusetts Institu

of Technology 170
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Sketch of Proof

!:ﬂ!lE&lﬂ_E\mEeﬂ & Robotic Systems

Starting from: convexity of J'(U") (assumption)
1. J""(A") is monotonically decreasing, strictly convex
— strict convexity of m., (¢}, Jinverse of cdf of Gaussian)

2. D(p) is continuous
— Conjugate Subgradient Theorem (Bertsekas 2009)

1 | 1

| 1 1

(o i u )I i
I'Iil- Massachusetts Institute of AIIllIl D % AI[.H-TLX
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Convergence to Optimal Solution

==
Model-based Embedded & Rohotic Systems
Q 0.02 -.
-
g 0.
q>’ 2 002 .
£ 38
8 2 004 .
Iq t_g
o] A
o) -0.06 -
g -0.08 -
D 100 2 8 10 12 14 16 18 20
F L L lteration number * L
Q 107 . .
©
m [
[} )
2 B 10 .
T "
8 10° . -
H—tt—————————F]
10'8' r r r r
0 5 10 15 20

I o s
I l" Massachusetts Institute of Technology

lteration number

16 agents, 4=0.01, T=5
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Result: Scalability

!:d!lﬁeln_i\mﬁlen & Rohotic Systems
E I I I J.f'l'\ I I I
'E' 1[] - L 4]
@ _
L -
) ) ) &
'E ) 5
o 10 Fc N 1
©
E ---£-- Centralized
g =— MIRA (Decentralized)
O 10° 2 .
-‘ﬁ | | | | | |
2 4 8 16 32 64 128

Number of agents
Values are the averages of 100 runs each

o[ 11 ; _Jos] ; JoO5 - _[0.001 0 >
‘4_[(1 1]'8_[ 1 ]"Eﬂ_[ 0 ] B 0 0]'

'“-];11]'_11 — _{.-.}.2. -Mﬂ'.lﬁ:{ — {-}.2. h:! = — [1 “-| ‘T-!” — ZI::H':. }E
t=1

I o s
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