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|_ecture outline

» 0 Types of uncertainty

0 Modeling stochastic, dynamic systems
0 Optimizing energy storage
0 Using Bellman error minimization
0 Using policy search and optimal learning




Modeling wind forecast errors

@ We have to model two types of errors:

» Amplitude error — Errors in how much energy will be generated by
wind.

» Temporal error — Errors in the timing of wind shifts.
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Electric vehicles

' O The vehicle

» How do we dynamically price
electricity at charging
stations?

» How will drivers adapt to
limited/slow recharging?

/I i 5‘ ; 7W'_ﬁﬁ7‘:—

// //;3 Manha

Q The grid
» What impact will EV’s have  [§ o - ta
on grid capacity? ;' WY SHHPl{s 9
» How can buildings be | J"
managed to handle anticipated §
shortages? v o




Uncertainty in models
|

a How will the market respond to price signals?

A

Uncertainty in our
belief about the
demand response
curve...

Electricity demand

Price



Uncertainty in models

|
a Making observations

A

Noise in our ability to
> observe the demand
response curve.

Electricity demand

Price



Disasters

HURRICANE CENTRAL D Hurrlcane Sandy
SANDY THREAT II\IDE)( .
MLEH EI Eurlmgmn BE":?C'F » Once In 100 yearsr)

SW‘EUSE BoSton

» Rare convergence of events

» But, meteorologists did an
- amazing job of forecasting
w_ﬁggm: 2 the storm.

;;;;;;;;

a The power grid

» Loss of power creates
cascading failures (lack of %
fuel, inability to pump water) B

» How to plan?
» How to react?
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Q Types of uncertainty
» 0 Modeling stochastic, dynamic systems
0 Optimizing energy storage
0 Using Bellman error minimization
0 Using policy search and optimal learning




Deterministic modeling

A For deterministic problems, we speak the language
of mathematical programming

» For static problems

min cx Arguably Dantzig’s biggest
Ax =Db contribution, more so than
x>0 the simplex algorithm, was

his articulation of

» For time-staged problems optimization problems in a

>
min > cx, standard format, which has
t=0 given algorithmic
AX — B X, =b researchers a common
D, X, <U, language.

X, =20
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Modeling dynamic problems

a We lack a standard language for modeling
sequential, stochastic decision problems.

» In the slides that follow, we propose to model problems

along five fundamental dimensions:
o State variables

Decision variables

Exogenous information processes

Transition function

Objective function

» This framework is widely followed in the control
theory community, and almost completely ignored in
operations research and computer science.

© 2013 Warren B. Powell



Modeling dynamic problems
|
Q The system state:
S, =(R,, I, K,) = System state, where:
R. = Resource state (physical state)
Energy investments, energy storage, ...
Status of generators
|, = Information state
State of the technology (costs, performance)
. Market prices (oil, coal)
K, = Knowledge state (“belief state")

Belief about the impact of electricity prices on demands
I R Belief about the effect of fertilizer on algal blooms

AN 'a

>4




Modeling dynamic problems

Q lllustrating state variables
» A deterministic graph

St :(Nt):6

© 2013 Warren B. Powell



Modeling dynamic problems

Q lllustrating state variables
» A stochastic graph

© 2013 Warren B. Powell



Modeling dynamic problems

Q lllustrating state variables
» A stochastic graph

wm
1

(Nt,(ct,Nt,j ) ) =(6,(12.7,8.9,13.5))

© 2013 Warren B. Powell



Modeling dynamic problems

Q lllustrating state variables
» A stochastic graph with left turn penalties

© 2013 Warren B. Powell



Modeling dynamic problems

Q lllustrating state variables
» A stochastic graph with generalized learning

© 2013 Warren B. Powell



Modeling dynamic problems

Q lllustrating state variables
» A stochastic graph with generalized learning

© 2013 Warren B. Powell



Modeling dynamic problems

a A proposed definition of a state variable:

» The state variable is the minimally dimensioned
function of history that is necessary and sufficient to
calculate the decision function, the cost/reward
function, and the transition function.

» From:

Powell, W.B., Approximate Dynamic Programming:
Solving the Curses of Dimensionality, Chapter 5,
downloadable from

http://adp.princeton.edu/

© 2013 Warren B. Powell



Modeling dynamic problems

Q Decisions:
Computer science

A a, = Discrete action
Control theory

u, = Low-dimensional continuous vector
Operations research

X, = Usually a discrete or continuous but high-dimensional
> vector of decisions.

To make a decision, we define
7(s) = Decision function (or "policy") mapping a state to an

L R an action a, control u or decision x.
‘(V/ .
> 4 J | prefer:

® (<)

Let A*(s) (or X*(s) or U”(s)), where r specifies the class of
policy, and any tunable parameters (which we represent using 6).



Modeling dynamic problems

|
a Exogenous information:

(4
&,
AR

>4

b

J

N

W, = New information = (Ifit, D, E,, ﬁt)

t?

N

R, = Exogenous changes in capacity, reserves
New gas/oil discoveries, breakthroughs in technology

N

D, = New demands for energy from each source
Demand for energy

Et = Changes in energy from wind and solar
p, = Changes in prices of commaodities, electricity, technology

Note: Any variable indexed by t is known at time t. This
convention, which is not standard in control theory,
dramatically simplifies the modeling of information.

Slide 31



Modeling dynamic problems

Q The transition function

) St+1 =S (St’ X ’Wt+1)

R.,=7n.,R +AX + FA%t+1 Water in the reservoir

P = By + Py SpOt priCeS
W‘ > el = e+ &' Energy from wind
Also known as the:
L N “System model”
W “State transition model”
@‘/Ae J “Plant model”

“Model”

Slide 32



Stochastic optimization models

Qa The objective function

(T
t
(min 753> 7
t=0
I

. .
EXpectation over a

random outcomes _ . . .
State variable Decision function (policy)

Finding the best policy

Cost function

Given a system model (transition function)
Sty = s" (St’ Xt’Wt+1(a)))

» We have to find the best policy, which is a function that
maps states to feasible actions, using only the
Information available when the decision is made.



Objective functions

Q There are different objectives that we can:
» EXpectations

min, EF (x,W)
» RISk measures
min, BF (x,W) + B[ F (x,W) - f_|’

min, p(F(x,W)) p € Convex/coherent risk measures

» Worst case (“robust optimization”)

min, max,, F (X, w)



Stochastic optimization models

L
a Definition:

» A policy iIs a mapping from a state to an action.
» ... any mapping.

a Observation:

» From my experience, there are four fundamental
classes of policies (for sequential decision problems).



Four classes of policies
I 0000

1) Myopic policies

» Take the action that maximizes contribution (or minimizes
cost) for just the current time period:

X" (S,) =argmax, C(S;,x,)

» We can parameterize myopic policies with bonus and
penalties to encourage good long-term behavior.

» We may use a cost function approximation:
X °A(S, |6) =argmax, C*(S,,x | 6)

The cost function approximation C*(S,, x, | #) may be
designed to produce better long-run behaviors.



Policies
]

2) Lookahead policies - Plan over the next T periods,
but implement only the action it tells you to do now.
» Deterministic forecast
X(3,) =argminC(Sy. %)+ Y 7C (S, %)

R Ko K it
» Stochastic programming (e.g. two-stage)

XtLA_S (S;) =argmin C(S~tt’ Xy ) + Z p(®) Z 7/t'_tc(§tt'(a))1 Xy (@)

e (%a(@) e % (@) 0 € O 00, t—tel

» Rolling/receding horizon procedures

» Model predictive control

» Rollout heuristics

» Tree search (decision trees), Monte Carlo tree search



Four classes of policies
I 0000

3) Policy function approximations

» Lookup table
* Recharge the battery between 2am and 6am each morning, and
discharge as needed.

» Parameterized functions
* Recharge the battery when the price Ls_ t?]elow o,
discharge when the price is above o™ o

» Regression models
X PA(S,10) = 6, +6,S, +6,(S,)

charge

and

» Neural networks




Four classes of policies
I 0000

4) Policies based on value function approximations
» Using the pre-decision state

X'[VFA(S'[) — arg maXXt (C(St ! Xt) + 7/E\7t+1(St+1))

» Or the post-decision state:

X{PA(S,) =argmax, (C(S,, %)+ (S} (5., %))

» This 1s what most people associate with “approximate dynamic
programming” or “reinforcement learning”



Four classes of policies

I
a There are three classes of
approximation strategies

» Lookup table 7
« Given a discrete state, return a discrete Z

TN

. e
action or value 1

» Parametric models
 Linear models (“basis functions™)
* Nonlinear models
* Neural networks

A AT

» Kernel regression

» Nonparametric/local parametric models
 Local polynomial x




Approximate dynamic programming

a Second edition
» 300+ new pages
» Four fundamental classes of

policies Approximate Dynamic
» New chapter dedicated to policy Programming

search (uses optimal learning)

» 3-chapter sequence for value
function approximations.

» Chapter 5 (on modeling) and
chapter 6 (on policies) available
at:

SECOND EDITION

Solving the Curses of Dimensionality

Warren B. Powell

http://adp.princeton.edu/

FWILEY




|_ecture outline

Q Types of uncertainty
0 Modeling stochastic, dynamic systems
a Optimizing energy storage
q a Using Bellman error minimization
0 Using policy search and optimal learning




Optimizing energy storage

|
Q Take advantage of price variations

ERCOT (Texas) price data

g
H

Dollars per megawatt-hour
g
2

Average price ~ $50/megawatt-hour |

~1600.00

i
\ -




Optimizing a renewable system

Q Energy storage with stochastic prices, supplies and demands.

i Wind speed
win
| WLV D,
y Electricityprices "
gri -
F)t : i |
Etv-\ll-Td E'[Wind E'[V-\il—Td
Pgrld | porid |39rid = EXOgenOUS InpUtS
e L2 S S %tate variable

D load _{ D load [3 load

t+1 t t+1

battery _\ p batte -
R~ =\R AX, X, = Controllable inputs



Optimizing a renewable system

Qa Bellman’s optimality equation

V, = minxte)( (C(St Ty {Vt+1 (St+1 (Ser X,

i EtWind | B Xtvvind —battery |
:)t grid Xtvvind ~load
:)t|03d th rid —battery
I thattery | thrid —load - -
i thattery—load )




The curse of dimensionality

B
Q Finding an optimal solution using exact methods:

140 6 mos —
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120

100
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E 80
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0
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Approximate value iteration
|

Step 1: Start with a pre-decision state S/’
Step 2: Solve the deterministic optimization using L
Deterministic

an approximate value function; optimization
U7 = min, (C,(S", %) €V," (8" *(S!", x)))

- n
to obtain X - Value function approximation
Step 3: Update the value function approximation Recursive
V' (SKD) =A-a, V(ST +a, W statistics

Step 4: Obtain Monte Carlo sample of W, (@") and

compute the next pre-decision state:

Step 5: Return o step 1. New information (“innovation”)

Simulation



Approximate policy iteration

Step 1: Start with a pre-decision state S/’
Step 2: Inner loop: Do for m=1,...,M:
Step 2a: Solve the deterministic optimization using

an approximate vglde function:

0" = minX(C(Sm,x)M’X(Sm,x)))

to obtain X"

date the value function approximation

M =0-ea, NS+, V"

Step 2c: Obtain Monte Carlo sample of W (™) and

compute the next pre-decision state:
gm+l _ gM (Sm’ Xm,W(a)m))

Step 3: Update V" (S) usingV " " (S) and return to step 1.

Step 2b:




Approximate policy iteration
|

Step 1: Start with a pre-decision state S/’
Step 2: Inner loop: Do for m=1,...,M:
Step 2a: Solve the deterministic optimization using
an approximate value function:
v" = min &C(sm x)+26?“ o (SM(S™, x))]
to obtain
Step 2b: Update the value function approximation
Vrrtmsemy = 1-a, V"M HS M)+, 0"
Step 2c: Obtain Monte Carlo sample of W (™) and
compute the next pre-decision state:
gm+l _ gM (Sm’ Xm,W(a)m))
Step 3: Update V" (S) usingV " " (S) and return to step 1.



Optimizing storage policy

N VAP
[ ILSAPI
B \yopic
[ |Direct

U | | I I
0 2 4 5] 8 10 12 14 16 18 20
Problem Number



Optimizing storage policy

I Myopic

| AP
l [ ILsAPI
I [ |Direct

L)

8 10 12 14 16 18 20
Problem Number



Optimizing storage policy

N VAP

[CILSAPI

B \yopic
| [ IDirect

0 2 4 5] 8 10 12 14 16 18 20
Problem Number
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Q Types of uncertainty
0 Modeling stochastic, dynamic systems
a Optimizing energy storage
0 Using Bellman error minimization
m== ) 0 Using policy search and optimal learning




Optimizing energy storage

Q The “buy low, sell high” policy

140.00

Sell

120.00

100.00

80.00 Sel|
60.00 SP' | Sell

Price

bell

40.00

20.00 -
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Optimizing energy storage

pmp—

F—e CINEMA CLASS(CS.COLLECT!

Don’t gamble; take all your
savings and buy some good stock
and hold it till it goes up, then
sell it. If it don’t go up, don’t
buy it.

NNy
oS g \",

B
SSSAN

)
%

——
ovoces

7z
’
%
z J
)
4

Will Rogers

It is not enough to model the variability of a process. You have to
model the uncertainty — the flow of information.



Optimizing energy storage

Q Grid operators require that batteries bid charge and
discharge prices, an hour In advance.

140.00

120.00

100.00

80.00

A

Discharge 00 ’A |

P Charge 000 %/ s\ fﬁv \/f ?
P s e c—

O o e e o o e e e o e L o o B o e e e e L B o o e e e o L INLIN e e e s o o o B 0 N LA B e e
1 3 5 7 9111315171921 23252729 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

a We have to search for the best values for the policy
parameters pCharge and lescharge



Optimizing energy storage
|

a We have to find the best policy

» Let X7 (S, | p™, p""""™) be the “policy” that chooses the
actions.

» We wish to maximize the function
T
min, EF (p,W) =EY_5'C(S,, X/ (S, 0))
t=0

Discharge




Optimal learning

a Assume we have five choices of experiments, with uncertainty
In our belief about how well each one will perform.

Qa If you can perform one experiment, which would you

measure? %

New solution

N
w
Sl \
o1

1

a The value of information is the expected improvement in a
design as a result of an experiment.



Optimal learning

a Assume we have five choices of experiments, with uncertainty
In our belief about how well each one will perform.

Qa If you can perform one experiment, which would you

measure?
NN

%

New solution

-

N
w
Sl \
o1

1

a The value of information is the expected improvement in a
design as a result of an experiment.



Optimal learning

A The knowledge gradient for policy search
» We need to solve the classical stochastic search problem

max, EF(x,W)

» We assume that F (X, W) can only be simulated, and observations
may be expensive.

» The knowledge gradient is the expected value of a single
measurement x, given by

Ot

Marginal \Ephéaib apHENG

» The knowledge gradient pollcy evaluates F (X W) at X Wlth the
largest value of v, "

60



Optimal learning

a Assume we have five choices of experiments, with uncertainty
In our belief about how well each one will perform.

Qa If you can perform one experiment, which would you

measure? <G

Probability

N
W R
IaN

1

a The value of information is the expected improvement in a
design as a result of an experiment, which requires striking a
balance between potential performance and uncertainty. e



Optimal learning

Q An important problem class involves correlated beliefs —
measuring one alternative tells us something other alternatives.

1
-
— measure
...these beliefs change too. here...

Q Correlated beliefs allow us to dramatically reduce the number

of experiments that need to be run.
62



Optimizing storage policy
B
a Initially we think the concentration is the same everywhere:

Estimated profit Knowledge gradient

11 P
0.35 o

0.3 e
Dzsﬁ |
0.2+

15

> We want to measure the value where the knowledge gradient is the
highest. This is the measurement that teaches us the most.

63



Optimizing storage policy

a After four measurements:

Estimated value Knowledge gradient

Value of another measurement
Measurement at same location. New optimum

1 )7 i, P
0.35

U\__;,__...x i < ,
" 0254 S,

» Whenever we measure at a point, the value of another
measurement at the same point goes down. The knowledge
gradient guides us to measuring areas of high uncertainty.



Optimizing storage policy

I
a After four measurements:

Estimated value Knowledge gradient

New optimum

Nextmeasurement

0.4 e e

0.35%

» Whenever we measure at a point, the value of another
measurement at the same point goes down. The knowledge
gradient guides us to measuring areas of high uncertainty.



Optimizing storage policy

a After five measurements:

Estimated value Knowledge gradient

- After measurement
NeXtmeaSUI'ement T

L

0.35 4




Optimizing storage policy

I
a After five measurements:

Estimated value Knowledge gradient

New optimum

ot I gon ) Ly l L sl
1 ,— '''' J ‘“» 0.3~




Optimizing storage policy

B
Q After six samples

Estimated value Knowledge gradient

New optimum




Optimizing storage policy

B
Q After seven samples

Estimated value Knowledge gradient

|
1.1 4
1.09 44

1.08 -

107 de




Optimizing storage policy

B
Q After ten samples, our estimate of the surface:

Estimated value True value




% of Optimal

Optimizing storage policy

100

90

80

70

60

250

40

30

20

10

N VAP
[CILSAPI
B \yopic
| [ IDirect
1L )
2 4 6 8 10 12 14 16 18 20

Problem Number



Optimizing storage policy

|
a The value of perfect information

Profit over eight year lifetime
1200000

1000000

$389,000

Colt¥
battery
600000

400000

200000

Will Rogers policy Optimized, admissible policy



Optimizing storage policy

|
a The value of perfect information

Profit over eight year lifetime
1200000

1000000

Colt¥
battery
600000

400000

200000

Will Rogers policy A better policy???



New book!

a New book on Optimal Learning
» Published by John Wiley in 2012.

» First 12 chapters are at an advanced Optlmal

undergraduate level.

» Funded by AFOSR Lea rnlng

Q Synthesizes communities: e R
» Ranking and selection |
» Multiarmed bandits
» Stochastic search
» Simulation optimization
» Global optimization
» EXperimental design

http://optimallearning.princeton.edu/

Slide 74
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0 Using policy search and optimal learning
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The stochastic unit commitment problem

Day ahead planning (steam)

Hourghead planning (gas turbines)

Real-time (economic dispatch)
9

60000 -

50000

40000

30000

20000

10000

NNNNNN
HHHHHHHHH

© 2013 Warren B. Powell



The timing of decisions

Q The day-ahead problem
Midnight Midnight Midnight Midnight
Noon Noon Noon

5

60000 -

50000 -

40000

30000

20000

10000

0 TTTTTTTT I T oI T I T T I T T I T I T T I I T T T T T T T I T T I T T T T T e T T I T T T T T T T I I T T T I T T T T T I T T I T T I T T I T I T T T T IT T Ir T TIrTTT

T
= N O N M~ = W oMM~ AN oMM~ 9 U o MnN S o m S A WO

© 2013 Warren B. Powell



The timing of decisions

Q The day-ahead problem

-
B

o e e e e i e e ot e e ot e Pt e P
o e e e e i e e ot e e ot e Pt e P e
o e i e e i e i it ot e e ke o ot e P el
o e i e e i e i it ot e e ke o ot e P el
o e i e e i e i it ot e e ke o ot e P el
ot e i e e e o e e e ot e P e e it s

ot e et e o e e e P e e e P et

'

Noon to midnight:
Steam on/off decisions determined the day before
ptimize within spinning reserve margins
ptimize on/off operation of gas turbines

© 2013 Warren B. Powell



The timing of decisions

Q The day-ahead problem

Midnight to midnight:
Optimize steam on/off decisions
Optimize within spinning reserve margins
Optimize on/off operation of gas turbines
Constrained by aggregate DC power flow

Steam on/off decisions are stored and implemented

© 2013 Warren B. Powell



The timing of decisions

Q The day-ahead problem

k _—
Vv

Midnight to noon the next day
Optimize steam on/off decisions
Optimize within spinning reserve margins
Optimize on/off operation of gas turbines
Constrained by aggregate DC power flow

No decisions are implemented. These are solved
only to minimize end-of-day truncation error.

© 2013 Warren B. Powell



The timing of decisions
I 0000

Q The hour-ahead problem

1pm me
>

60000

50000

40000

30000

20000

10000
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The timing of decisions

I 0000
Q The hour-ahead problem

o T i e e e e e e

B o T o R T T o T o R T T R T i e e e
B o T o R T T o T o R T T R T i e e e
B o T o R T T o T o R T T R T i e e e
B o T o R T T o T o R T T R T i e e e
B o T o R T T o T o R T T R T i e e e
I I ll

Steam on/off decisions determined the day before
Optimize within spinning reserve margins
On/off operation of gas turbines determined the hour before

© 2013 Warren B. Powell



The timing of decisions

I 0000
Q The hour-ahead problem

o T i e e e e e e

B o T o R T T o T o R T T R T i e e e

2pm to 3pm:
Steam on/off decisions determined the day before
Optimize within spinning reserve margins
Optimize on/off operation of gas turbines
Constrained by aggregate DC power flow

On/off decisions for gas turbines are stored and
Implemented

© 2013 Warren B. Powell



The timing of decisions

I 0000
Q The hour-ahead problem

o T i e e e e e e

B o T o R T T o T o R T T R T i e e e

3pm to 4pm:
Steam on/off decisions determined the day before
Optimize within spinning reserve margins
Optimize on/off operation of gas turbines
Constrained by aggregate DC power flow

No decisions are stored or implemented.

© 2013 Warren B. Powell



The timing of decisions

I 0000
a Economic dispatch

1pm
1:051:101:151:20 1:25 1:30
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The timing of decisions

Q Economic dispatch

1pm

1:051:101:151:20 1:25 1:30

2pm

peutigeoedyroefore

YINEGRSESHTME MArgins
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The nesting of decisions

Day ahead planning (steam)

Hour ahead planning (gas turbjine)
> > > > > >
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The nesting of decisions

Day ahead planning (steam)

Hour ahead planning (gas turbine)

—
E[EFL‘—_t)ime (optimal power flow)
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The nesting of decisions
t t'

<€
When the When the ’
decision Is |< )@@ > decision is
«— .
made Implemented
<
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The nesting of decisions

L
t t’

N
7

> Day-ahead unit commitment

_______________ > Load curtailment notification
.............. > Natural gas generation
-----> Tapping spinning reserve
I |
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The nesting of decisions
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Four classes of policies
I 0000

1) Cost function approximation

»  XA(S,]0) =argmin, C*(S,, X |6)
2) Lookahead policies

» Deterministic lookahead:

~ T - ~ N
X P(S) =argminC (S, %)+ D 7' "C(Sy %)
Xitr X tarr o Koot t'=t+1

» Stochastic lookahead (“stochastic programming™)
XtLA_S (S)) =argminC(S,, X, )+ Z p(w) Z 7/tl_tC(Stt'(a))’ X (@)

el t'=t+1

3) Policy function approximations
» Lookup tables, rules, parametric functions

4) Policies based on value function approximations
» X(S,) =arg min, (C(St, X, )+ NV (StX(St , xt)))

© 2013 Warren B. Powell



ookahead policies

The lookahead model

a Lookahead policies peek into the future
» Optimize over deterministic lookahead model

t+1 t+2 t+3
The real process

© 2013 Warren B. Powell



ookahead policies

a Lookahead policies peek into the future
» Optimize over deterministic lookahead model
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ookahead policies

The lookahead model

a Lookahead policies peek into the future
» Optimize over deterministic lookahead model
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The real process
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ookahead policies

a Lookahead policies peek into the future
» Optimize over deterministic lookahead model

A
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The real process
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ookahead policies

Q Probabilistic lookahead
» Here, we approximate the information model by using a

Monte Carlo sample to create a scenario tree:

» We can try to solve this as a single “deterministic”
optimization problem, This Is a direct lookahead policy.



ookahead policies

The lookahead model

a We can then simulate this lookahead policy over
time:

t+1 t+2 t+3
The real process
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ookahead policies

a We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The real process
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ookahead policies

a We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The real process
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ookahead policies

a We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The real process
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Generation




Robust unit commitment
I

O We need to achieve a robust schedule:

Generation



The stochastic unit commitment problem

a A deterministic model
» Optimize over all decisions at the same time

m IN
( t'=l,..,24
(Ve dro1,.24

Steam generation Gas turbines

» These decisions need to made with different horizons
« Steam generation is made day-ahead
 (as turbines can be planned an hour ahead or less

© 2013 Warren B. Powell



The stochastic unit commitment problem

a A stochastic model
» We capture the information content of decisions
t+24

5 COGe Yeor)

e X; ¢ IS determined at time t, to be implemented at time t’
* Y, Is determined at time t’, to be implemented at time t’+1

» Important to recognize information content
« Attimet, X ¢ IS deterministic.
« Attimet, y,. .. Is stochastic.

© 2013 Warren B. Powell



The stochastic unit commitment problem

a A stochastic lookahead model
» We capture the information content of decisions

F (S,/6)= min Y C (X, ,)

Policy

X — X = 6L Reserve must be a fraction of the load

* X ¢ IS determined at time t, to be implemented at time t’
* Y, Isdetermined at time t’ by the policyY * (Stt,)

» The challenge now is to adaptively estimate the ramping
constraints @,., and the policies Y *(S,,.).

tt' !

© 2013 Warren B. Powell



The stochastic unit commitment problem

a When planning, we have to use a forecast of energy from
wind, then live with what actually happens.

hour 0-24

>

e

f, . = Wind forecast

| =tV

t,t'<
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24

>

"".—._‘

© 2013 Warren B. Powell



The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24

>
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The stochastic unit commitment problem

A The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

Hours 0-24 Hours 25-48

L i - y i '} L3 i
L ' £l L %
" v P | 5
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1 = =
3 1
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SMART-ISO

Click on graphic to play video




SMART-ISO

Qa Historical power generation during Jan 8-14 2010
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PJM Hourly Historical Generation - 8-14.Jan.2010
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(,o bined cycle

Nuclear




SMART-ISO: Calibration

@ Simulated power generation during Jan 8-14 2010

Pumped storage
mAvVA0140

110000 SMART-ISO with grid Hourly Gt Gas turbine 20 Combined cycle
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SMART-ISO: Mid Atlantic Offshore Wind

44065
R 14025]

@ Mid-Atlantic Offshore Wind
Integration and Transmission
Study (U. Delaware & partners,
funded by DOE)

@ 20+ offshore sub-blocks in 4
build-out scenarios:
» 1:27 GW
» 2:49 GW
AP , _MeanQO-m
» 3: 64 GW | i ‘ wind sped (m/s)
» 4:77 GW W

@ Compare to total 70-80 GW
usage for entire PJM grid.

Mike
Sallor's Energy .-
222222222
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SMART-ISO: Mid Atlantic Offshore Wind

® Observed vs WRF predicted wind on Jan 8-28, 2010

Observed vs Day-Ahead (WRF) Predicted Wind - Buildout 1 - 08-28.Jan.2010
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SMART-ISO: Mid Atlantic Offshore Wind

® Observed vs WRF predicted wind on Jan 8-28, 2010

Observed vs Day-Ahead (WRF)JPredjcted Wind - Buildout 1 - 08-28.Jan.2010
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SMART-ISO: Mid Atlantic Offshore Wind

3 July actual vs. forecasted (day ahead)
» Plotted same scale as January data
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Modeling wind forecast errors
I 0000

A We need a mathematical model of the stochastic process
describing errors in wind forecast

» We are using the “WRF” model to predict wind. WRF is a
sophisticated meteorological model that can predict shifts in
weather patterns.

» We need to separate amplitude errors (how much wind at a point in
time) from temporal errors (errors in the timing of a weather shift).

Frorn 16-Jul-2011ka 19-Jul-2011
12
I

10— —

Amplitude

e B | " 1
r’-' pora er 10 m _
. .,M‘ iy i

Jul1%12.¢h‘| Jul17 124804 Jul1d 1248k Jul19 1240 Ju I2EI12AM Jul2 1 12ak4

Welocity [rmiz]

N
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Modeling wind forecast errors
I 0000

a We “fit” a forecast by optimizing temporal shifts
» Nonlinear cost function penalizes amplitude and penalty shifts
» Additional penalty for changes in shifts

» Optimized “fit” obtained by solving a dynamic program. State
variable = (shift of previous point, change in two previous shifts)

dC =1 (dC: cost for moving distance difference)

0
840 850 860 870 880 890 900 910
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Modeling wind forecast errors

Q The level crossing tests

From 23-Jul-2011ta 28-Jul-2011

E ; AI l'i.. J] - “‘ HMMA l‘l. iy

w2 T 1\I|1\|ii‘~v

Ju |2@ 1240 Jul2g 12.&M JUl2T 12404
Ab 4m/

— Actual

» Using temporal adjustments, we get a E — simuated |
very accurate match with historical Q oo
level crossing distributions. 2 ]
S | — Actual
. . . > o —— Predicted
» Joint research with Prof. Elie Bou- & o3
Zeid and Jinzhen Jin (CEE) E
= 0.0 A ! L
© 2013 Warren B. Pov%) I ° ° Duration(hour) o



SMART-ISO: Mid Atlantic Offshore Wind

a Sample paths from stochastic model
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SMART-ISO: Mid Atlantic Offshore Wind

Q Sample paths from stochastic model
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SMART-ISO: Mid Atlantic Offshore Wind

R Day-Ahead UC - 8-14.Jan.2010
Avail Wind: 16.2% Used Wind: 16.1%

B DA-Planned Wind Power

B DA-Planned Storage Power

B DA-Planned Fast Power
W Ca-Planned Slow Power
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SMART-ISO: Mid Atlantic Offshore Wind

0000 Hour-Ahead UC - 8-14.Jan.2010 Uncovered
Avail Wind: 16.2% Used Wind: 16.1% demand
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SMART-ISO: Mid Atlantic Offshore Wind

SMART IS'.':‘.I Subhuurly 8-14.Jan. 201[} Uncovered
demand

40000

W Actual Demand [Exc)

N Simulated (Used) Wind

B Simulated Storage Power
M Simulasted Fast Power

W Simulsted 5low Power
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SMART-ISO: Mid Atlantic Offshore Wind

R SMART-ISO Subhourly - 8-14.Jan.2010 Uncovered
Avail Wind: 16.2% Used Wind: 9 demand




The stochastic unit commitment problem

a A stochastic lookahead model
» We capture the information content of decisions

24
412 C (Xtt' ’ thz (Stt'))
t'=1

Reserve must be a fraction of the load

* X ¢ IS determined at time t, to be implemented at time t’
* Y, Isdetermined at time t’ by the policyY * (Stt,)

» The challenge now is to adaptively estimate the ramping
constraints @,., and the policies Y *(S,,.).

tt' !

© 2013 Warren B. Powell



The stochastic unit commitment problem

I 0000
Q Our hybrid policy

» The decision X Is constrained by time-dependent lower
bounds 6. on the amount of fast ramping capacity,
which are adaptively updated during the simulation.

» The policyY,”(S,.)Is constrained by the solution X, .
» Updates to 6. are based on stochastic gradients which
capture their impact on both
dF (S, | 9) / dF (S, | 0) dx,.
dHtt dx’[t dHtt

» Parameters that determine the Detravi
updated in a similar way.

» This produces a nested, adaptive policy which requires

solving sequences of deterministic problems.
© 2013 Warren B. Powell




The nesting of decisions
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The nesting of decisions
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SMART-ISO: Mid Atlantic Offshore Wind

@ Wind build-out 1 — forecasts Difficult to
forecast
precipitous
P Wind Power Predictions - 8-14.Jan.2010 di’OpS in Wlnd
IN the hour-
2500 T e T ahead time
Actual [ qﬂ ﬁ“[J AT I frame
£ 15000 i;’"[L_I-'J | " | Hour ahead
| . ..
i ” Day ahead prediction
| prediction
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The stochastic unit commitment problem

a Observations

» We encountered the most difficulty from forecast errors
In the hour-ahead model.

» Ensuring enough reserve capacity did not provide
sufficient protection against variations in wind.

» The problem is that generators ramp at different rates.
We may have enough reserve capacity, but if the ramp
rates are not fast enough, we cannot access it in time.

» Simple idea: require a certain level of fast ramping
capacity.

» More sophisticated idea: nested reserve capacity
management (due to Prof. Boris Defourny)



The stochastic unit commitment problem

a Ramping reserve constraints

A

Virtual reservew\

%/( \ Planned power
t | t'

p,. = Planned power level for time t' when planning at time t

Pu

A\

X = Virtual" up-reserve planned for time t", for nested lookahead
Indexed at time t' (within lookahead for time t).
down

X o = Virtual” down-reserve planned for time t*, for nested lookahead
Indexed at time t' (within lookahead for time t).



The stochastic unit commitment problem

a Ramping reserve constraints

Pu

~

Virtual

'
S
N.

l/

reservy

_— |

b at t+2

N

Planned power

tl

(x{’ﬁ’,,t.w,g — Prig ) = Up-ramping reserve for generation g

A\

(Xﬂf-ﬂ,t-ﬂw,g — pt,t-,g)—(&‘ff.,t.w,g ~ Prrrg ) = Change in up-ramping reserve for g

Z(thj,tp'+1,t'+1+At,g o pt,t',g ) _(Xtu,tp',t'+At,g o pt,t',g ) 2 gup L[ SyStemWide Change in up-l’amping
g



The stochastic unit commitment problem

a Ramping reserve constraints
4 / /

P
y Planned power

N
7

t t'
» We impose systemwide up- and down- ramping
constraints for each of the nested lookahead models.

» This Is all solved within a single, “deterministic”
lookahead model solved as an integer program....

» ....avery large integer program.



The stochastic unit commitment problem

a The day-ahead unit commitment model
» We solve a cost function approximation

t+48

F(S 167,077 = min > C(X e Vo)

(tt)t—l ..... 24t —t
(Ve i), .24

» Subject to:
» Generator constraints
e Demand constraints
e DC power flow constraints
« Up and down ramping reserve constraints:

Z(Xtu,?'+l,t'+l+At,g B pt,t',g)_(xtu,f',t'JrAt,g o pt,t',g ) 2 Huth SyStemWide Change in up-ramping

g

down

D (Perg = X0 vtiag )= (Prg = Xota g ) = 0L, Systemwide change in down-ramping

g
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SMART-ISO: Mid Atlantic Offshore Wind

SMART-ISO - Real-time Simulation Build level 2 - 13-19.Jan.2010

Avail Wind: 8.9%, Used Wind: 7.8%
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SMART-ISO: Mid Atlantic Offshore Wind

e SMART-ISO - Real-time Simulation Build level 2 - 13-19.Jan.2010
Avail Wind: 8.9%, Used Wind: 7.2%
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SMART-ISO website

http://energysystems.princeton.edu/smartiso.htm
SMART-ISO

SMART-ISO is a stochastic, multiscale model of grid operations under development at PENSA _ which is currently being built around the full PJM grid. The
purpose of this website is to provide ongoing documentation of what we have accomplished, what we are working on and features that we hope to develop in the
near future. (If vou have been to this website before, be sure to hit vour refresh button to ensure vou have the latest version )

When the model settles down, we will begin providing indications of "what is new_ " For now (summer, 2012) the model is going through rapid evolution and we
ask for everyone's patience.

A video of SMART-ISO (new! August 28, 2012)

Orverview of SMART-ISO

Studies {ongoing and anticipated)

Features {current and planned) (updated August 28, 2012)

Supporting data (updated August 28, 2012)

Svstem components (npdated August 28, 2012)

Handling uncertainty
Documentation

The SMART-ISO development team




|_ecture outline

Q Types of uncertainty
0 Modeling stochastic, dynamic systems
0 Optimizing energy storage
0 Using Bellman error minimization
0 Using policy search and optimal learning




Observations
I

Q The real problem is not just variability, but uncertainty.
Our ability, or inability, to forecast an event is critical.

Q The best way to solve a problem under uncertainty
depends on the structure of the problem. Even small
variations can fundamentally change the algorithmic
strategy.

Q Getting verifiable, high quality solutions to even fairly
simple problems is astonishingly difficult. Just because
you have a method that provides a number, it does not
mean it Is a good number!

Q Applications in energy introduce a rich set of challenges
that go beyond known algorithms.






