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Disclaimer #1

• There is really nothing
(more) about zombies 
in this talk
– that was just to get

you in the room today
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Disclaimer #2

• There is not really
much about
computational
sustainability, either
– well, there is some
– I will try, with varying degrees of success, to 

provide examples of decomposition in 
problems related to computational 
sustainability
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• Applying LBBD to Problems Somewhat 
Related to Computational Sustainability

• Beyond Decomposition 
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wherein, I try to convince you that 
decomposition is central to applying 

optimization to real problems
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Wind Farm Design

• You want to build a
commercial wind farm
– what turbines do you buy? how many?
– where do you build it? what do you build (e.g., 

turbine foundations, turbine layout, roads, 
electrical connections, energy storage)?

– how do you build it (construction planning)?
– how do you operate it?
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Wind Farm Design

• You want to build a
commercial wind farm
– what turbines do you buy? how many?
– where do you build it? what do you build (e.g., 

turbine foundations, turbine layout, roads, 
electrical connections, energy storage)?

– how do you build it (construction planning)?
– how do you operate it?

8

[Zhang 2013] MASc Thesis, University of Toronto.

Somehow you need to decide how to solve all these inter-related problems.

The only reasonable way forward (as our scientific/engineering 
methodology has it) is to identify sub-problems we can solve 

(more or less) independently.
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Problem 1: Turbine Placement

• Objective: maximize energy production or 
profit

• Constraints:
– location: min. separation, land topology, 

existing infrastructure
– limit of input power to grid
– turbine specifications

• Decisions:
– turbine types, number, placement

9

Thanks to Peter Zhang.
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Turbine Placement Challenges
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Problem 2: Infrastructure Layout

• Design the supporting structure
– turbine foundations, electrical network, road 

network, control, monitoring and data 
gathering

– reliability, maintenance, life time (stochastic!)
• Power loss via transmission scales with 

length
– the turbine placement and electrical network 

are interdependent

11

Thanks to Peter Zhang.
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Problem 3: Wind Energy Storage

• Smooth supply variations by storing 
energy (e.g., battery)
– how big should the battery be?

• Depends on how it is used
– connection with unit commitment problem
– economic connection with turbine placement

12

Thanks to Peter Zhang.
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So What is My Point?
13

• Standard approach: decomposition
– focus on something we can solve

• Maybe particularly dangerous in 
computational sustainability
– law of unintended consequences

• But the whole problem is just too big!
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Decomposition

• Hierarchical (the standard way)
– overall problem is split into sub-problems 

solved one at at time or independently
• e.g., infrastructure layout after turbine placement

– no feedback
• Integrated

– decisions really depend on 
each other but problem too 
big to solve in one model

– decomposition with feedback
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• Logic-based 
Benders Decomposition
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wherein the basic idea is introduced
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Resource Allocation & 
Scheduling

Assign jobs

[Hooker 2005] Constraints, 10, 385-401, 2005.



University of Toronto
Mechanical & Industrial Engineering

17

Resource Allocation & 
Scheduling

Assign jobs

[Hooker 2005] Constraints, 10, 385-401, 2005.



University of Toronto
Mechanical & Industrial Engineering

17

Resource Allocation & 
Scheduling

Assign jobs
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Problem Details

• Each job, j, has:
– release date, Rj (earliest start time)
– deadline, Dj (latest end time)
– processing time, pjk, on resource k
– resource requirement, rjk, for resource k
– cost, cjk, to use resource k

• Goal: assign and schedule jobs to 
minimize total assignment cost while 
satisfying time windows and resource 
capacity

18



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

[Heinz & B. 2012] CPAIOR, 211-227, 2012.



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

xij = 1 if job j is assigned to resource i

[Heinz & B. 2012] CPAIOR, 211-227, 2012.



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

xij = 1 if job j is assigned to resource i

all jobs assigned to one resource

[Heinz & B. 2012] CPAIOR, 211-227, 2012.



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

xij = 1 if job j is assigned to resource i

all jobs assigned to one resource

resource capacity

[Heinz & B. 2012] CPAIOR, 211-227, 2012.



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

xij = 1 if job j is assigned to resource i

all jobs assigned to one resource

resource capacity

time windows

[Heinz & B. 2012] CPAIOR, 211-227, 2012.



University of Toronto
Mechanical & Industrial Engineering

CP Model
19

xij = 1 if job j is assigned to resource i

all jobs assigned to one resource

resource capacity

time windows

Tends not to work too well
(if goal is finding and proving optimality).

Why?

[Heinz & B. 2012] CPAIOR, 211-227, 2012.
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Global Model

[Hooker & Ottosson 2003] Mathematical Programming, 96, 33-60, 2003.
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Master Problem

Subproblem 1 Subproblem n. . .

Solution Solution
Cut Cut

[Hooker & Ottosson 2003] Mathematical Programming, 96, 33-60, 2003.
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LBBD

• Partition problem into
– Master problem with decision variables, y
– Sub-problem(s) with decision variables, x
– When the y’s are fixed (to say, ŷ), sub-

problems are formed
• MP & SP do not have to be any particular 

form (e.g., IP/LP, IP/CP)
• Each sub-problem is an inference dual

– What is the max. LB that can be inferred 
assuming y = ŷ?

21
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Making LBBD Work

• Sub-problem relaxation
– MP solving needs to have some guidance or 

else it just enumerates all MP solutions
• Strong & cheap cuts

– Cuts should remove more than just the 
current MP solution

22
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Questions?Questions?
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Resource Allocation & 
Scheduling

Assign jobs

Schedule Schedule Schedule
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Minimize resource assignment cost

Sub-problem relaxation
(Can we do better?)

Benders cut
(Can we do better?)

Each activity is assigned to one resource
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Benders Cut

• Do not allow same assignment of activities 
(or a superset) to be assigned to the same 
resource

• Gets inserted into the master problem!
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Benders Cut

• Do not allow same assignment of activities 
(or a superset) to be assigned to the same 
resource

• Gets inserted into the master problem!

26

Counter for the iterations 

The set of jobs assigned to 
resource k in iteration h. 
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LBBD Subproblem (CP)

• Single-machine, feasibility problem

27
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A Tighter Relaxation
32

[Hooker 2007] Integrated Methods for Optimization, 2007.
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[Hooker 2007] Integrated Methods for Optimization, 2007.

“Single” relaxation
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A Tighter Relaxation
32

[Hooker 2007] Integrated Methods for Optimization, 2007.

“Single” relaxation

“Interval” relaxation
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A Stronger Benders Cut?
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A Stronger Benders Cut?

• Repeatedly resolve infeasible sub-
problem, removing activities to identify a 
minimal infeasible subset of Jhk

33
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Results?

• Well it is a bit controversial
– LBBD best for finding and proving optimality
– MIP best for finding high-quality feasible 

solutions
– CIP competitive
– CP good for finding high-quality feasible, bad 

for proving optimality 
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Parallel Machine Scheduling
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Parallel Machine Scheduling
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[Tran & B. 2012] ECAI, 774-779, 2012.

Parallel machine 
scheduling with 
sequence and 

machine dependent 
set-ups
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36

xijk = 1 if k is processed directly after j on 
machine i

each job preceded and succeeded 
by at most one other job

sets completion time of jobs based 
on sequence

only one job first on each machine
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Your Turn
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model
– master problem?
– sub-problem?
– sub-problem 

relaxation?
– cut?
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Your Turn

• Develop an LBBD 
model
– master problem?
– sub-problem?
– sub-problem 

relaxation?
– cut?

37

assign jobs to machines

sequence each machine TSP

Remember: jobs needs to be 
assigned to machines and the 
jobs on a machine need to be 

sequenced.
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xij = 1 iff job j is assigned to machine i
yijk = 1 iff job j is immediately before job k

on machine i
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xij = 1 iff job j is assigned to machine i
yijk = 1 iff job j is immediately before job k

on machine i

Sub-problem relaxation

Generated by sub-problem
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Sub-problem

• Assymetric TSP
– nodes = jobs
– distance = set-up time

39
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Cut
40

Optimal makespan on 
machine i in iteration h

Lower bound on job j’s
contribution to the makespan

on machine i in iteration h
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Stopping Conditions

• All SPs find schedule with 
makespan ≤ makespan of MP, or

• MP finds solution with makespan equal to 
best feasible solution found so far
– each iteration provides a feasible (but not 

necessarily improving) solution 

41
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Results
42

0.01

0.1

1

10

100

1000

10000

100000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

10 20 30 40 50 60

R
un

tim
e 

(s
)

# of Machines and Jobs

MIP

Benders

[Tran & B. 2012] ECAI, 774-779, 2012.



University of Toronto
Mechanical & Industrial Engineering

43



University of Toronto
Mechanical & Industrial Engineering

The Plan 

• Decomposition &
Modeling

• Logic-based 
Benders Decomposition
(LBBD)

• Applying LBBD to Problems Somewhat 
Related to Computational Sustainability

• Beyond Decomposition 

44

wherein we try to get back to the 
topic of the Master Class
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Problem 1: Turbine Placement

• Objective: maximize energy production or 
profit

• Constraints:
– location: min. separation, land topology, 

existing infrastructure
– limit of input power to grid
– turbine specifications

• Decisions:
– turbine types, number, placement

45

Thanks to Peter Zhang.
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Turbine Placement Challenges
46
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Computational Sustainability?

• Originally the facilities were to be recycling 
centres in the city of Tehran

111
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A Mixed Integer Model 
112






:0
:1

jp
if site j is open

otherwise






:0
:1

ijkx
if client i is served by the kth vehicle of site j

otherwise






:0
:1

jkz
if a  kth vehicle of site j

otherwise

[Alberada-Sambola et al. 2009], Computers & OR, 36(2): 597-611, 2009.
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Your Turn

• Develop an LBBD 
model
– master problem?
– sub-problem?
– sub-problem 

relaxation?
– cut?
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Decisions to make

• Which facilities to open
• Which customers to assign to which open 

facilities
• How many vehicles at each facility
• Which customers to assign to which trucks

115
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Logic-Based Benders 
Decomposition (LBBD)

116

Capacity and Distance 
Constrained Plant Location 

Problem

[Fazel-Zarandi & B 2012] IJOC, 24, 399-415, 2012. 
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Logic-Based Benders 
Decomposition (LBBD)

116

Location-Allocation Master 
Problem

Truck Assignment
Subproblem 1

(TASP 1)

Truck Assignment
Subproblem n

(TASP n)
. . .

[Fazel-Zarandi & B 2012] IJOC, 24, 399-415, 2012. 
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[Fazel-Zarandi & B 2012] IJOC, 24, 399-415, 2012. 
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116

Location-Allocation Master 
Problem

Truck Assignment
Subproblem 1

(TASP 1)

Truck Assignment
Subproblem n

(TASP n)
. . .

Solution Solution
Cut Cut

[Fazel-Zarandi & B 2012] IJOC, 24, 399-415, 2012. 



University of Toronto
Mechanical & Industrial Engineering

Can We Do Better?

• Why do I have to make the truck 
assignment right away?
– introduces a lot of symmetry
– delay detailed truck assignment until we have 

a facility and customer assignment that looks 
good

• Triple index (xijk) is ugly
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Change the Model
118

if site j is open

otherwise

if client i is served by site j

otherwise

:jnumVeh The number of vehicles assigned to facility j






:0
:1

ijx






:0
:1

jp
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Distance 
Constraints

Each client is served by 
one facility

Capacity Constraint

We’ll talk about these later…
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Solving this model, we get:

• The open facilities (pj)
• The assignment of customers to facilities 

(xij)
• The number of trucks at each facility 

(numVehj)
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Solving this model, we get:

• The open facilities (pj)
• The assignment of customers to facilities 

(xij)
• The number of trucks at each facility 

(numVehj)

120

So we’re done, right?
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A Problem

• The customers assigned to a facility might 
not fit in the trucks we have allocated to 
that facility

121
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Truck Assignment Subproblem
(TASP)
• Given: Assigned clients & number of 

vehicles at each open facility
• Goal:  Assign clients to vehicles such that 

the vehicle distance constraints are 
satisfied

122
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Truck Assignment Subproblem
(TASP)
• Given: Assigned clients & number of 

vehicles at each open facility
• Goal:  Assign clients to vehicles such that 

the vehicle distance constraints are 
satisfied

122

TASP = bin packing
[distance = “capacity”]
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TASP
123

Bin packing
(CP)

Send cut

Start

numVeh[j],I[j] 

First Fit 
Decreasing

END

numFFD > 
numVeh

NO

numBin>numVeh

YES

YESNO
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Bin Packing Using CP
124

:.tS
 ijj distItvehicleDispack ,,

jjj numVehFFDackingnumVehBinPnumVeh 

min jackingnumVehBinP
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What about the cut?
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Truck 1 Truck 2 Truck 3
Truck distance capacity (l)= 100 km
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What about the cut?
125

2

43

1

75 km

75 km75 km

75 km

Truck 1 Truck 2 Truck 3 Truck 4
Truck distance capacity (l)= 100 km

1 2 3 4100 km

 



hIi

ijjhj xnumVehnumVeh 1*

4 trucks 1 truck
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Cuts

• Constraints added to the MP each time 
one of the sub-problems is not able to find 
a feasible solution

126

 



hIi

ijjhj xnumVehnumVeh 1*
hJj
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Cuts

• Constraints added to the MP each time 
one of the sub-problems is not able to find 
a feasible solution

126

# vehicles at site j
assigned in iteration h

Max. decrease in the # 
vehicles needed given 

reassigned clients

 



hIi

ijjhj xnumVehnumVeh 1*
hJj
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Distance 
Constraints

Each client is served by 
one facility

Capacity Constraint
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Sub-problem Relaxation

Distance 
Constraints

Each client is served by 
one facility

Capacity Constraint

Benders cuts

Location-Allocation Master Problem (LAMP)
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LBBD vs IP LBBD > 300 times faster 
than IP

128

IP CPU Time

LB
B

D
 C

P
U

 T
im

e

[Fazel-Zarandi & B 2012] IJOC, 24, 399-415, 2012. 
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The Plan 

• Decomposition &
Modeling

• Logic-based 
Benders Decomposition
(LBBD)

• Applying LBBD to Problems Somewhat 
Related to Computational Sustainability

• Beyond Decomposition

130

Does anyone notice any 
inconsistencies in the story I 

am telling you so far?
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Decomposition

• Hierarchical (the standard way)
– overall problem is split into sub-problems 

solved one at at time or independently
• e.g., infrastructure layout after turbine placement

– no feedback
• Integrated

– decisions really depend on 
each other but problem too 
big to solve in one model

– decomposition with feedback
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A Weakness in My Story

• Motivation was about taking really big 
complex problems and decomposing

• But all my examples have really been 
“small” problems (the type we normally 
solve in CP/AI/OR)
– e.g., all the aspects of building a wind farm 

not just turbine placement
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A Challenge

• Rather than decomposing what we already 
see as a single problem, can we unify 
what we think of as separate problems?
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Directions

• Integrating maintenance
planning and 
production scheduling 
– long-term stochastic 

reasoning combined with short-term 
combinatorial reasoning 
[Aramon Bajestani, forthcoming] PhD dissertation, University of 
Toronto
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Master Problem

. . .

Cut Cut

Subproblem 1 Subproblem n

Solution Solution
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Core Representation
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Cut Cut

“extra stuff” “extra stuff”

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core
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Core Representation
[SAT]

. . .

Cut Cut

“extra stuff”
[T-solver 1]

“extra stuff”
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Core Representation
[SAT]

. . .

Cut Cut

“extra stuff”
[T-solver 1]

“extra stuff”
[T-solver n]

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core

SAT Modulo Theory (SMT)SAT Modulo Theory (SMT)
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Core Representation
[LP or MIP]

. . .

Cut Cut

“extra stuff”
[cut generator]

“extra stuff”
[cut generator]

[Partial] Solution [Partial] Solution
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Core Representation
[LP or MIP]

. . .

Cut Cut

“extra stuff”
[cut generator]

“extra stuff”
[cut generator]

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core

Branch-and-cutBranch-and-cut
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Core Representation
[logical state representation]

. . .

Cut Cut

“extra stuff”
[LP]

“extra stuff”
[temporal]

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core

[Gregory et al. 2012] ICAPS, 65-73, 2012.
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Core Representation
[logical state representation]

. . .

Cut Cut

“extra stuff”
[LP]

“extra stuff”
[temporal]

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core

(AI) Planning Modulo Theory(AI) Planning Modulo Theory

[Gregory et al. 2012] ICAPS, 65-73, 2012.
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Core Representation
[domain store + branching heuristics]

. . .

Cut Cut

“extra stuff”
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Core Representation
[domain store + branching heuristics]

. . .

Cut Cut

“extra stuff”
[global constraint 1]

“extra stuff”
[global constraint n]

[Partial] Solution [Partial] Solution

Reduced expressivity & a fast solver

Not [easily or efficiently] representable in core

CPCP
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Domain consistencyThesis

• CP itself can be seen as an instance of 
this decomposition pattern

• But a sub-problem “solver” (i.e. a 
constraint) has been almost always 
consistency enforcement

• It is time to move beyond this narrow view 
of a constraint and really exploit the choice 
of a rich constraint representation
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Things a Constraint Can Do

• Automatically detect independent sub-
problems and solve them 
[Heinz, Ku, & B. 2013] CPAIOR, 12-27, 2013.

• Automated remodeling via dual presolving
[Heinz, Schulz, & B. 2013] Constraints, 18, 166-201, 2013.

• Provide heuristic information (solution 
counting)
[Pesant et al. 2012] JAIR, 43, 173-210, 2012.

• Generate clauses/explanations
[Schutt et al. 2011] Constraints, 16, 173-194, 2011.
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Take Home Message I

• Decomposition (LBBD) is a
valuable approach to solving hard 
combinatorial optimization problems
– But it is non-trivial to use
– Sub-problem relaxation and cuts critical

• Can it be used to integrate related 
problems currently solved separately?
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Take Home Message II

• LBBD is a pattern of delayed
constraint posting that can be seen in a 
number of techniques: SMT, B&Cut, and 
PMT
– thinking of global constraints as such a sub-

problem (and more than just an inference 
mechanism) is a promising direction
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No zombies were optimized in the making of this 
presentation
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