
Researchers in computing, information science, and 

many other disciplines are working together to support 

sustainable development.

The dramatic depletion of natural resources in the last century now 
threatens our planet and the livelihood of future generations.  Our Common 
Future, a report by the World Commission on Environment and Develop-
ment published in 1987, introduced for the first time the notion of “sus-
tainable development:  development that meets the needs of the present 
without compromising the ability of future generations to meet their needs” 
(UNEP, 1987).  The concerns raised in that report were reiterated by the 
Intergovernmental Panel on Climate Change (IPCC, 2007).  In the fourth 
Global Environmental Outlook report published later that same year the 
authors concluded, “there are no major issues raised in Our Common Future 
for which the foreseeable trends are favorable” (UNEP, 2007).

Key issues in the development of policies for sustainable development 
will entail complex decisions about the management of natural resources 
and more generally about balancing environmental, economic, and societal 
needs. Making such decisions optimally, or nearly optimally, presents sig-
nificant computational challenges that will require the efforts of researchers 
in computing, information science, and related disciplines, even though 
environmental, economic, and societal issues are not usually studied in 
those disciplines.

In this author’s opinion, it is imperative that computer scientists, infor-
mation scientists, and experts in operations research, applied mathematics,  
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statistics, and related fields pool their talents and 
knowledge to help find efficient and effective ways of 
managing and allocating natural resources.  To that 
end, we must develop critical mass in a new field, 
computational sustainability, to develop new compu-
tational models, methods, and tools to help balance 
environmental, economic, and societal needs for a sus-
tainable future.

Examples of computational sustainability problems 
presented in this short paper range from wildlife pres-
ervation and biodiversity to balancing socio-economic 
needs and the environment to the large-scale deploy-
ment and management of renewable energy sources.

Biodiversity and Species Conservation

The reduction and fragmentation of natural habitats 
as a result of deforestation, agriculture, urbanization, 
and land development is a leading cause of species 
decline and extinction.  One strategy for improving the 
chances of species viability is to protect habitats by cre-
ating biologically valuable sites or reserves.  Examples 
include the National Wildlife Refuge System, man-
aged by the U.S. Fish and Wildlife Service, national 
parks, and conservation reserves established by private 
groups, such as the Nature Conservancy and the Con-
servation Fund.

Given the limited resources available for conservation, 
these sites must be carefully chosen.  From a mathemati-
cal point of view, the site-selection or reserve-design 
problem involves optimizing certain criteria, such as 
habitat suitability for species, while simultaneously sat-
isfying one or more constraints, such as limited budgets 
(e.g., Ando et al., 1998; Moilanen et al., 2009; Polasky 
et al., 2008).

In recent years biologists attempting to combat habi-
tat fragmentation have promoted so-called “conserva-
tion corridors,” continuous areas of protected land that 
link biologically significant zones.  The design of conser-
vation corridors is a special aspect of the site-selection 

problem, and the objective is to create connected corri-
dors made up of parcels of land that will yield the highest 
possible level of environmental benefit (“utility”) (Onal 
and Briers, 2005; Williams et al., 2005).

At the Institute for Computational Sustainability 
(ICS) at Cornell University, we recently formulated 
this problem mathematically as a so-called “connec-
tion sub-graph problem” (Conrad et al., 2007; Dilkina 
and Gomes, 2009; Gomes et al., 2008).  The goal was 
to design wildlife corridors for grizzly bears in the U.S. 
northern Rockies to enable movement between three 
core ecosystems—Yellowstone, Salmon-Selway, and 
Northern Continental Divide Ecosystems—that span 
64 counties in Idaho, Wyoming, and Montana.  This 
large-scale optimization problem places significant 
demands on current computational methods.

To scale up solutions, we needed a deeper under-
standing of the underlying structure of the problem.  To 
that end, we developed a budget-constrained, utility-
optimization approach using hybrid constraint-based 
mixed-integer programming that exploits problem 
structure.  Our results showed that we can dramatically 
reduce the cost of large-scale conservation corridors by 
provably finding corridors with minimum cost.  If more 
than minimum funding for a corridor is available, this 
approach guarantees optimal utility.  For example, for 
the grizzly bear problem our solutions are guaranteed to 
be within 1 percent of the optimal solution for budget 
levels above the minimum cost.

Complexity in site-selection and corridor-design 
problems increases when different models for land 
acquisition over different time periods (e.g., purchase, 
conservation easements, auctions), dynamic and sto-
chastic environments, and multiple species must be 
considered.  For example, preserving bird habitats and 
designing bird corridors requires a good understanding 
of hemispheric-scale bird migrations with complex pop-
ulation dynamics across different climate and weather 
systems and geographic topologies.

Thus modeling complex species distributions and 
developing conservation strategies requires new large-
scale stochastic-optimization methods.  Moreover, to 
obtain the right model parameters and determine cur-
rent species distribution, machine learning and statisti-
cal techniques must be used to analyze large amounts of 
raw data (Dietterich, 2009; Elith et al., 2006; Kelling et 
al., 2009; Phillips et al., 2004).

Gathering biological, ecological, and climatic data  
is essential to studying complex systems, and the 

Computational sustainability 
will give us the tools to 
balance environmental, 

economic, and societal needs.



7WINTER	2009

deployment of large-scale sensor networks is becoming 
a key tool for environmental monitoring (e.g., Polastre 
et al., 2009; Werner-Allen et al., 2006).  The National 
Science Foundation (NSF) supports several cyber-
infrastructure initiatives for massive data collection 
and data analysis based on large-scale autonomous sen-
sor networks, such as the National Ecological Observa-
tory Network (NEON) and the Long-Term Ecological 
Research Network (LTER).

Designing a large-scale sensor network also presents 
computational challenges (e.g., network architecture, 
operating system and programming environments, 
data collection, analysis, synthesis, and inference) 
(Akyildiz et al., 2007).  For example, when using sen-
sor networks to monitor spatial phenomena, selecting 
the best placement of sensors to maximize information 
gain while minimizing communication costs is a com-
plex problem that requires new techniques (Krause 
and Guestrin, 2009).

Citizen observation networks have several benefits.  
They help in collecting data and, at the same time, 
enable the general public to engage in scientific inves-
tigation and develop problem-solving skills.  Galaxy 
Zoo,1 for example, provides access to a large collection 
of images and engages the general public in classifying 
galaxy shapes to improve our understanding of their for-
mation.  eBird,2 a joint initiative of the Cornell Labora-
tory of Ornithology and the National Audubon Society, 
engages citizen-scientists in observing birds using stan-
dardized protocols.  Since eBird was released in 2002, 
it has been visited by more than 500,000 users and has 
collected more than 21 million bird records from more 
than 35,000 unique users in more than 180,000 loca-
tions across the Western Hemisphere and New Zealand 
(Sullivan et al., 2009).

Management of Natural Resources

This example concerns the state of marine fisher-
ies.  The biomass of top marine predators is estimated 
to be one-tenth of what it was half a century ago and 
is still declining (Worm et al., 2006).  As a result of 
overfishing, pollution, and other environmental fac-
tors, many important marine species are extinct, with 
dramatic consequences for the filtration of nutrients 
by the ocean.  Researchers believe that the collapse of 
major fisheries is primarily the result of mismanagement 

(Clark, 2006; Costello et al., 2008).  Therefore, we must 
find sustainable ways of managing fisheries.

One approach that has been shown to be effective 
for counterbalancing the overharvesting of fisheries 
involves both placing limitations on total allowable 
catches per species and requiring permits for harvesting 
specific quantities of fish (individual transferable quo-
tas) (Costello et al., 2008; Heal and Schlenker, 2008; 
Worm et al., 2009).  Complex dynamical models, origi-
nally developed as part of dynamical systems theory, can 
be used to identify the optimal amount of fish that can 
be harvested annually in a certain fishery, taking into 
consideration re-generation rates, carrying capacity of 
the habitat, discount rates, and other parameters.

Dynamical systems theory, which provides tools for 
characterizing the dynamics and long-term behavior of 
systems as a function of the system parameters, provides 
insights into nonlinear system dynamics and identi-
fies patterns and laws, particularly bifurcations (Ellner 
and Guckenheimer, 2006; Strogatz, 1994).  A bifurca-
tion occurs when small changes in the parameter val-
ues of a system (e.g., the rate of harvesting fish) lead 
to an abrupt qualitative change (e.g., the collapse of a 
fishery).  Decisions (e.g., the amount of fish to be har-
vested) are often based on combinations of continuous 
and discrete variables.  This leads to hybrid dynamical 
optimization models, which, in principle, provide infor-
mation on optimal harvesting strategies (Clark, 1976; 
Conrad, 1999).  However, finding such strategies is 
computationally difficult, especially when considering 
multiple species.

Balancing Socioeconomic and  
Environmental Needs

Chris Barrett of ICS has studied the socioeconomic 
interrelationship between poverty, food security, and 
environmental stress in Africa, particularly links 
between resource dynamics and the poverty trap in 
small-holder agrarian systems (Barrett et al., 2007).  
Barrett’s focus has been on pastoral systems in East 
Africa that involve herds of cattle, camels, sheep, and 

1 available online at http://www.galaxyzoo.org/.
2 available online at http://ebird.org/content/ebird.

The biomass of top marine 
predators is about one-tenth 
of what it was 50 years ago.
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goats (Luseno et al., 2003).  Due to high variability in 
rainfall, pastoralists must migrate with their herds look-
ing for water and forage, sometimes traveling as much 
as 500 kilometers.

The purpose of our studies is to develop a predictive 
model of the migratory patterns and decision models 
of these pastoralists.  To do that, we use machine- 
learning methods to determine the structure and esti-
mate the parameters of the models, based on field data 
about households, water sources, and climate patterns.

Ultimately, these models will help policy makers pre-
dict the effects of potential policy interventions and 
environmental changes, with the goal of improving the 
livelihoods of thousands of pastoralists.  The project 
involves new technical approaches to large, structural-
dynamic, discrete-choice problems that will lead to the 
development of computational models to support both 
descriptive studies and predictive policy analyses (Toth 
et al., 2009).

Other computational sustainability topics in this 
context include automated decision-support tools 
for providing humanitarian aid in response to catas-
trophes, famines, and natural disasters in developing 
countries.  The design of such systems will require the 
development of intuitive, user-friendly interfaces for 
use by aid workers.

Energy-Efficient Data Centers

The implications of climate change for environ-
mental, economic, and social systems have led to  
major changes in energy policy in many industrial 
countries, including incentives for increasing energy  
efficiency. These incentives present tremendous  
computational opportunities for helping to increase 
energy efficiency through the design of intelligent or 
“smart” control systems for energy-efficient buildings, 
vehicles, and appliances.

According to the World Business Council for Sus-
tainable Development (2008), buildings account for 
as much as 40 percent of energy use in industrialized 
countries.  Data centers (i.e., computing facilities with 

electronic equipment for data processing, storage, and 
communications networking) are especially inefficient 
users of energy.

In recent years the shift to digital services has led to 
a major increase in demand for data centers.  The Envi-
ronmental Protection Agency estimates that in the next 
decade the demand for data-center capacity will grow 
at a 10 percent compounded annual growth rate (EPA, 
2007).  In addition, the costs of data centers in the infor-
mation technology (IT) sector are estimated to increase 
at an annual rate of 20 percent, compared to an overall 
increase in IT of 6 percent (Kaplan et al., 2008).

Data centers also have negative environmental 
impacts.  According to a recent report, the amount 
of carbon dioxide emissions produced by data cen-
ters worldwide exceeds the total emissions of both 
Argentina and the Netherlands (Kaplan et al., 2008).  
Thus the IT industry is looking to advanced power- 
management hardware, smart cooling systems, virtual-
ization tools, and dense server configurations to reduce 
energy consumption (Katz, 2009).

These new approaches rely heavily on large amounts 
of data provided by large-scale sensor networks (e.g., 
Bodik et al., 2008; Hoke et al., 2006; Patnaik et al., 
2009; Shah et al., 2008).  Some companies are using 
containers that integrate computing, power, and cool-
ing systems in one module for data centers, instead of 
raised-floor rooms.  Several IT companies are commit-
ted to using alternative energy sources, such as hydro-
power, solar power, and wind power, to bring the carbon 
footprint of data centers to zero.

On a larger scale, data centers can contribute to 
reductions in energy use and carbon emissions by facili-
tating e-commerce and telecommuting, for example, 
which can eliminate some of the need for paper printing 
and for freight and passenger transportation.

The Smart Grid

Under the Energy Independence and Security Act 
(EISA) of 2007, the U.S. Department of Energy was 
charged with modernizing the nation’s electricity grid to 
improve its reliability, efficiency, and security, a concept 
known as the Smart Grid.  Ideally, the Smart Grid will 
radically transform the industry’s business model from a 
largely non-digital, electromechanical grid to a network 
of digital systems and power infrastructure and from a 
centralized, producer-controlled network to a more 
decentralized system with more interaction between 
consumers and local producers.

Data centers emit more 
 CO2 than Argentina and  

the Netherlands.
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The objectives for the Smart Grid include: enabling 
active participation by consumers; making possible 
the easy integration of a variety of generation options 
(with a focus on renewable sources) and storage options; 
enabling new products, services, and markets; providing 
quality power for the digital economy; optimizing assets 
and operating efficiently; automatically anticipating 
and responding to system disturbances; and operating 
resiliently in the event of attacks or natural disasters.

To realize these objectives, the Smart Grid will 
include smart sensors and controls throughout the 
transmission and distribution system and a broad com-
munication platform for two-way communications to 
move data and electricity between utilities and con-
sumers.  For example, consumers will have smart meters 
that can track energy consumption, monitor individual 
power circuits in the home, control smart appliances, 
and actively manage energy use.

Planning and operating such a large, complex digi-
tal ecosystem will require technological advances in 
computing and information science related to sensing 
and measuring technologies, advanced control meth-
ods, monitoring and responding to events, support for 
dynamic pricing, computational aspects of game-theory 
models and mechanism design, multi-agent based mod-
els, improved interfaces, decision-support and optimiza-
tion tools, and security and privacy tools.

Renewable Energy

The development of 
renewable energy can have 
an even greater environ-
mental impact than increas-
ing energy efficiency. In 
recent years technological 
progress has been made 
(partly in response to gov-
ernment incentives) in 
renewable energy sources, 
such as biofuels and biomass, 
geothermal, solar, and wind 
power.  For example, EISA 
set fuel economy standards 
for vehicles that will require 
the production of 36 billion 
gallons of renewable fuels 
per year by 2022, a fivefold 
increase over current etha-
nol production levels.

The logistics and planning of this large-scale domestic- 
based biofuels production system raise complex sto-
chastic optimization problems—variants of the so-called 
“facility-location problem”—that must take into con-
sideration feedstock and demand and the dynamics of 
demand and capacity (Shmoys, 2004).  And the stakes 
are high.  Finding good solutions to these problems can 
make the difference between economic viability and 
failure.  Overall, we will need complex computational 
models to find the best mix of energy generation and 
storage technologies.

A larger project will be the development of computa-
tional models (Figure 1) that show interactions between 
different energy sources and the agents directly or indi-
rectly involved (e.g., households, landowners, farmers, 
ethanol producers, gasoline refiners, food producers) 
and impacts on the environment (e.g., greenhouse gas 
emissions, water, soil erosion, biodiversity, etc.).

To begin with, the overall impact of biofuels is not 
well understood.  Take, for example, their impact on 
land use.  Traditional life-cycle studies do not take into 
account emissions from changes in land use, which are 
difficult to quantify (Seager et al., 2009; Searchinger et 
al., 2008; Tilman et al., 2009).

Another example is the impact of wind power, a 
promising renewable energy source that has raised 
concerns about damage to bird and bat populations.  
Research will be necessary to provide guidelines for the 

FIGURE 1   Interacting components for biofuel analysis.
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location of wind farms, especially because most areas 
with favorable winds are associated with important 
migratory pathways.

The research challenge is to develop realistic mod-
els that capture multiple impacts and interdependen-
cies without imposing strong (unrealistic) assumptions.  
In traditional approaches, convexity assumptions force 
unique equilibria, or at the very least, the set of equi-
libria are themselves convex (Codenotti et al., 2005; 
Heijungs and Suh, 2002; Ye, 2008).  This has made their 
algorithmic solution possible, but such models do not 
capture key aspects of systems.  Researchers will have 
to develop more complex decision models through col-
laboration with resource economists, environmental 
scientists, and computer scientists.

Individual Interests vs. the Common Good

A key issue in environmental policy is balanc-
ing individual interests and the common good (e.g., 
Hardin, 1968).  In this area, game-theory models can 
model the interactions of multiple agents and show the 
effects of competing interests.  In the context of natu-
ral resources or climate change on the international 
level, for example, economic incentives may influence 

whether a country is motivated to enter an agreement 
and then abide by it.

Incentive-based policies can also facilitate sustain-
ability challenges on a smaller scale (e.g., the establish-
ment of novel markets for land-conservation activities).  
To be useful, multi-agent models will have to explore 
mechanisms and policies for the exchange of goods.

The Research 
Challenges

Research in computa-
tional sustainability involves 
many different areas in com-
puting, information science, 
and related disciplines. Fig-
ure 2 shows some of the areas 
that are closely related to 
examples in this article and 
to the ICS research agenda 
(ICS, 2010).  Figure 3 shows 
the levels of complexity in 
computational sustainabil-
ity, which often addresses 
large-scale problems based 
on large volumes of data  
in highly dynamic and 
uncertain environments 
with many interacting  
components.

Given these complexi-
ties, the study of com-
putational sustainability  

FIGURE 2    Examples of research themes and interactions in computational sustainability that are closely aligned with the research 
agenda of the Institute for Computational Sustainability at Cornell University.

FIGURE 3   Increasing levels of complexity in computational sustainability problems.



11WINTER	2009

problems requires a fundamentally new approach that 
is unlike the traditional computer science approach 
(i.e., the science of computation), which is driven 
mainly by worst-case analyses.  From the perspective of 
computational sustainability, problems are considered 
“natural” phenomena that are amenable to scientific 
methodology, rather than purely mathematical abstrac-
tions or artifacts.  In other words, to capture the struc-
ture and properties of complex real-world sustainability 
problems, principled experimentation is as important 
as formal models and analysis (Gomes and Selman, 
2005, 2007).

Summary

The development of policies for a sustainable future 
presents unique computational problems in scale, 
impact, and richness that will create challenges, but 
also opportunities, for the advancement of the state 
of the art of computer science and related disciplines.  
The key research challenges are developing realistic 
computational models that capture the interests and 
interdependencies of multiple agents, often involving 
continuous and discrete variables, in a highly dynamic 
and uncertain environment.

Research in this new field is necessarily interdisci-
plinary, requiring that scientists with complementary 
skills work together.  In fact, collaboration is an essen-
tial aspect of the new science of computational sustain-
ability, an interdisciplinary field that applies techniques 
from computer science, information science, operations 
research, applied mathematics, statistics, and related 
fields to help balance environmental, economic, and 
societal needs for a sustainable future.

The focus is on developing computational and 
mathematical models, methods, and tools for mak-
ing decisions and developing policies concerning the 
management and allocation of resources for sustain-
able development.  The range of problems encompasses 
computational challenges in disciplines from ecology, 
natural resources, economics, and atmospheric science 
to biological and environmental engineering.  Com-
putational sustainability opens up fundamentally new 
intellectual territory with great potential to advance the 
state of the art of computer science and related disci-
plines and to provide unique societal benefits.
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