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Abstract. Several combinatorial optimization problems can be
translated into the Weighted Partial Maximum Satisfiability (WPMS)
problem. This is an optimization variant of the Satisfiability (SAT)
problem. There are two main families of WPMS solvers based on
SAT technology: branch and bound and SAT-based. From the MaxSAT
evaluations, we have learned that SAT-based solvers dominate on
industrial instances while branch and bound dominate on random. For
crafted instances it depends on the category.
In this work, we study the performance of an Integer Linear
Programming approach. In particular, we translate the WPMS problem
into ILP and apply the Mixed Integer Programming (MIP) solver, IBM-
CPLEX. We present an extensive experimental evaluation showing that
this approach clearly dominates on crafted instances.

1 Introduction

The Maximum Satisfiability (MaxSAT) problem is the optimization version of
SAT and has several application domains [2, 4, 20–24]. The idea behind this
formalism is that sometimes not all constraints of a problem can be satisfied,
and we try to satisfy the maximum number of them. The MaxSAT problem can
be further generalized to the Weighted Partial MaxSAT (WPMS) problem. In
this case, we can divide the constraints in two groups: the constraints that must
be satisfied (hard), and the ones that may or may not be satisfied (soft). In the
last group, we may put different weights to the constraints, where the weight is
the penalty to falsify the constraint.

There are two main classes of WPMS algorithms: branch and bound [7, 11,
13–15] and SAT-based [1, 5, 8–10, 17–19]. SAT-based MaxSAT algorithms consist
in the reformulation of the problem as a sequence of SAT instances.

From the last international MaxSAT evaluation 2012 [3], we can conclude
that SAT-based solvers dominate on industrial instances while branch and bound
dominate on random instances. For crafted instances, it is not so clear. Branch
and bound solvers have dominated since 2006, but at the last 2012 evaluation,
two SAT-based solvers were reported to be the best for crafted instances at the
Weighted Partial MaxSAT category.
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In this paper, we focus our attention on Mixed Integer Programming (MIP)
techniques from Operation Research (OR). They have been very successful on
solving optimization problems and it makes sense to study the performance of
these techniques on WPMS instances. In particular, we explore the approach
which consists in translating the WPMS instances into ILP and then apply
a MIP solver. It is easy to see that the soft clauses of a WPMS instance
represent the objective function of the corresponding ILP instance, while the hard
clauses represent the region of feasible solutions. Section 3 provides a detailed
description.

Our experimental evaluation shows that this approach clearly dominates on
(Weighted) Partial crafted instances. This is a surprising result not reported
before and worth to be known in the community. On the other hand, we also
show that this approach is not competitive on the industrial instances. Therefore,
further work is required to identify the strength of ILP for crafted instances and
how to take advantage of it.

To our best knowledge, the first work using MIP technology for MaxSAT
solving can be found in [6]. However, the experimental results did not show
such a good performance on crafted instances. A more recent work, using MIP
technology can be found in [5]. The authors present a hybrid approach where a
SAT solver and a MIP solver interact. This approach also solves a sequence of
SAT instances as SAT-based solvers. These instances are simpler than the ones
generated by SAT-based solvers since all the arithmetic constraints are extracted
and managed by the MIP solver. This is an interesting approach, but from the
experimental evaluation we can see it is not yet competitive enough.

This paper proceeds as follows. Section 2 presents some preliminary concepts.
Section 3 presents the translation from WPMS into ILP. Section 4 presents the
experimental evaluation. Finally, Section 5 shows the conclusions and the future
work.

2 Preliminaries

A literal is either a Boolean variable x or its negation x. A clause C is a
disjunction of literals. A weighted clause is a pair (C, w), where C is a clause
and w is a natural number or infinity, indicating the penalty for falsifying the
clause C. A Weighted Partial MaxSAT formula is a multiset of weighted clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The set of
variables occurring in a formula ϕ is noted as var(ϕ).

A (total) truth assignment for a formula ϕ is a function I : var(ϕ)→ {0, 1},
that can be extended to literals, clauses, SAT formulas. For MaxSAT formulas
is defined as I({(C1, w1), . . . , (Cm, wm)}) =

∑m
i=1 wi (1 − I(Ci)). The optimal

cost of a formula is cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}} and an optimal
assignment is an assignment I such that I(ϕ) = cost(ϕ).

The Weighted Partial MaxSAT problem for a Weighted Partial MaxSAT
formula ϕ is the problem of finding an optimal assignment.
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3 Translation of Weighted Partial MaxSAT into ILP

Encodings translating WPMS into ILP can be found in the literature [12, 16].
Here, we describe the precise encoding we used in our evaluation. Given a
WPMS formula, {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}, we can
translate it into a ILP instance, as follows:

Let s = (∪m
i=1 CNF (bi ↔ Ci)) and h = (∪m+m′

j=m+1Cj), where CNF (ϕ)
transforms ϕ into Conjuntive Normal Form and the bi’s are new fresh Boolean
variables. The ith element of s ensures that bi is true iff the soft clause Ci is
falsified and h is the set of hard clauses of the WPMS problem. The soft clauses of
a WPMS instance represent the objective function of the equivalent ILP instance
which can be described as follows:

Minimize:
∑m

1 wi · bi

Subject to:
ILP (s ∪ h)
0 ≤ xi ≤ 1, xi ∈ var(s ∪ h)

where function ILP (ϕ) maps every clause Ci ∈ ϕ into a linear inequality with
operator >. The left-hand side of the linear inequality corresponds to the sum
of the literals in Ci once mapped into integer terms, such that, literal x(x) is
mapped to integer term x(1 − x). The right-hand side corresponds to constant
0. After moving the constants to the rigth, the right-hand side corresponds to
constant −k, where k is the number of negative literals in clause Ci. Finally,
we add the bounding box constraints that ensure that every integer variable in
the ILP instance has domain {0, 1}. It can be easily seen that the implication
Ci → bi from bi ↔ Ci is unnecessary (as we are optimizing).

Example 1. Given the WPMS formula, {(x1 ∨ x2, 2), . . . , (x1 ∨ x2, 3), (x1 ∨
x2,∞), (x1 ∨ x2,∞)}, the corresponding ILP formulation is 1:

Minimize: 2 · b1 + 3 · b2

Subject to:

x1 + x2 + b1 > 0; \ b1 → (x1 ∨ x2)
−x1 − b1 > −2;
−x2 − b1 > −2; \ (x1 ∨ x2)→ b1

x1 − x2 + b2 > −1; \ b2 → (x1 ∨ x2)
−x1 − b2 > −2;
x2 − b2 > −1; \ (x1 ∨ x2)→ b2

−x1 + x2 > −1; \ x1 ∨ x2

−x1 − x2 > −2; \ x1 ∨ x2

Bounds: 0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 1; 0 ≤ b1 ≤ 1; 0 ≤ b2 ≤ 1;

1 For example, for the first soft clause we get: ILP ({CNF (b1 ↔ (x1 ∨ x2)}) =
ILP ({CNF (b1 → (x1 ∨ x2)), CNF ((x1 ∨ x2) → b1) }) = ILP ({(x1 ∨ x2 ∨ b1),
(x1∨b1), (x2∨b1) }) = {(x1+x2+b1 > 0), ((1−x1)+(1−b1) > 0), ((1−x2)+(1−b2) >
0) } = {(x1 + x2 + b1 > 0), (−x1 − b1 > −2), (−x2 − b1 > −2) }.
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4 Experimental Results

In this section we present our intensive experimental investigation on the PMS
and WPMS crafted and industrial instances from the 2012 MaxSAT Evaluation.
Results on random instances are not included since the translation of WPMS
into ILP did not win on any family. We provide results for the ILP translation,
the best two solvers for each category of the 2012 MaxSAT Evaluation, and
two solvers which did not participate but have been reported to exhibit good
performance. We run our experiments on a cluster featured with 2.27 GHz
processors, memory limit of 3.9 GB and a timeout of 7200 seconds per instance 2.

The results are presented in Table 1 following the same criteria as in the
2012 MaxSAT Evaluation. For each solver and family of instances, we present
the number of solved instances in parenthesis and the mean solving time. Solvers
are ordered from left to right according to the total number of solved instances.
The results for the best performing solver in each family are presented in bold.
The number of instances of each family is specified in the column under the
sign ’#’. Since different families may have different number of instances, we also
include for each solver the mean ratio of solved instances.

Table 1 shows the results of our experimentation where we compare the
following solvers. The solver ilp which corresponds to the translation of MaxSAT
into ILP (see Section 3) 3, and the application of the MIP solver IBM-
CPLEX studio124 (through C++ API and default parameters). The best two
solvers for each category of the 2012 MaxSAT Evaluation: WPMS crafted
(wpm1 [1], shinms [9]), WPMS industrial (pwbo2.1 [17, 18], wpm1), PMS crafted
(qms0.21 [10], akms ls [11] and PMS industrial (qms0.21g2, pwbo2.1). Two other
solvers that have been reported to exhibit good performance: bincd2 , which is
the new version of the BINCD algorithm [8, 19], with the best configuration
reported by authors, and maxhs from [5], which is a hybrid SAT-MIP approach.

Table 1(a) presents the results for the PMS crafted instances. The ilp
approach solves 332 of 372 instances, 35 more than akms ls. PMS solver qms0.21
is the third in solved instances but the first in mean ratio with 81.1%.

Table 1(b) presents the results for the WPMS crafted instances. Again, the ilp
approach is the best one, solving 332 of 372 instances, 14 more than the second
one, wpm1. It has a clear impact on the auc-paths, auc-scheduling and mini-
encoding-warehouses families, solving 100% of the instances in half a second.

Table 1(c) presents the results for the PMS industrial instances. We can
see that, although the ilp approach is in general not competitive for industrial
instances, it wins for aes, bcp-fir and bcp-syn families. In bcp-syn it performs
much better than the rest of the solvers.

Table 1(d) presents the results for the WPMS industrial instances. Although
we can confirm that the ilp approach is not competitive for industrial instances,
it performs quite well in upgradeability-problem family.

2 We thank the Artificial Intelligence Research Institute (IIIA) of the Spanish Research
Council (CSIC) for the access to their high-performance computing clusters.

3 Not considering implication Ci → bi gave similar results.
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Family # ilp akms ls qms0.21 shinms bincd2 pwbo2.1 wpm1 maxhs

frb 25 1153(13) 160(5) 347(25) 44(23) 0.0(0) 151(15) 0.0(0) 2099(5)
job-shop 3 0.0(0) 0.0(0) 42(3) 36(3) 100(3) 93(1) 83(2) 0.0(0)
mxc ran 96 45(96) 1.1(96) 270(83) 339(76) 85(71) 80(64) 0.0(0) 2164(12)
mxc str 62 326.5(38) 282(41) 800(30) 402(23) 109(21) 37(19) 92(9) 1039(13)
mxo 3st 80 13.1(80) 0.5(80) 198(80) 695(78) 8.3(80) 37(63) 208(78) 234(46)
mxo str 60 337.6(59) 482(38) 6.4(60) 3.5(59) 57(60) 7.7(60) 618(41) 0.0(0)
min-enc kt 42 163(42) 3199(34) 248(6) 514(5) 275(6) 307(2) 689(3) 0.0(0)
ps ml 4 34(4) 259(3) 1.8(4) 3.4(4) 49(4) 93(4) 5.3(3) 92(4)
Total 372 332 297 291 271 245 228 136 80
Ratio 76.5% 63.2% 81.1% 77.0% 65.3% 59.3% 41.1% 26.4%

(a) Partial Crafted

Family # ilp wpm1 shinms akms ls pwbo2.1 maxhs bincd2
auc-pat 86 0.5(86) 484(59) 318(84) 2.6(86) 111(19) 35(86) 1415(12)
auc-sch 84 0.4(84) 5.7(84) 5.8(84) 68(84) 7.7(81) 965(78) 142(81)
min-enc-p 56 297(56) 36(53) 8.2(52) 141(40) 0.5(56) 459(31) 33(54)
min-enc-w 18 0.5(18) 20(14) 0.4(1) 20(2) 3.8(14) 0.2(1) 2.1(1)
ps-ml 12 82.82(3) 845.0(5) 128(5) 0.3(2) 4.0(3) 0.1(1) 1073(4)
ran-net 74 533(59) 160(41) 0.0(0) 4061(8) 42(35) 2771(10) 0.0(0)
wcsp-s5-d 21 43(18) 549(14) 744(21) 1556(6) 62(8) 101(6) 128(12)
wcsp-s5-l 21 323(8) 277(15) 201(17) 109(5) 1.7(6) 357(6) 299(13)
Total 372 332 285 264 233 222 219 177
Ratio 78.6% 72.0% 64.8% 45.3% 54.4% 41.6% 45.6%

(b) Weighted Partial Crafted

Family # bincd2 qms0.21g2 pwbo2.1 shinms wpm1 ilp maxhs

aes 7 453(1) 3155(1) 0.0(0) 0.0(0) 0.0(0) 1311(3) 453(2)
bcp-fir 59 44(58) 108(56) 68(56) 14(22) 9.6(55) 63(59) 481(25)
bcp-h-y si 17 171(16) 358(17) 175(15) 41(16) 137(16) 667(6) 277(11)
bcp-h-y su 38 245(32) 106(35) 98(25) 282(34) 310(24) 0.0(0) 307(21)
bcp-msp 64 214(38) 452(30) 96(26) 281(22) 320(9) 856(37) 120(1)
bcp-mtg 40 1.2(40) 0.2(40) 0.6(40) 0.6(40) 13(40) 769(29) 115(6)
bcp-syn 74 29(43) 284(35) 22(39) 87(33) 32(41) 19(71) 86(61)
cir-tra-com 4 109(4) 45(4) 200(2) 52(4) 544(4) 6922(1) 0.0(0)
hap-ass 6 728(5) 153(5) 9.1(5) 0.0(0) 289(4) 2125(5) 14(5)
pbo-mqc ne 84 279(84) 59(84) 222(68) 146(84) 486(35) 1101(6) 400(34)
pbo-mqc nl 84 79(84) 24(84) 72(82) 180(79) 423(49) 508(6) 364(37)
pbo-rou 15 1.1(15) 3.6(15) 28(15) 4.8(15) 1.2(15) 20(15) 28(14)
pro-ins 12 314(3) 129(12) 0.1(1) 207(4) 0.3(1) 2.7(1) 7.6(1)
Total 504 423 418 374 353 293 239 218
Ratio 78.2% 83.0% 66.3% 63.6% 61.2% 48.9% 43.0%

(c) Partial Industrial

Family # wpm1 pwbo2.1 bincd2 maxhs ilp shinms

hap-ped 100 203(95) 123(87) 545(73) 1089(39) 1892(18) 1204(47)
tim 26 1168(11) 672(7) 169(8) 1250(6) 0.0(0) 2261(5)
upg-pro 100 16(100) 33(100) 76(100) 13(100) 19(100) 0.0(0)
Total 226 206 194 181 145 118 52
Ratio 79.1% 71.3% 67.9% 54.0% 39.3% 22.1%

(d) Weighted Partial Industrial

Table 1. Experimental results of ILP translation compared with other solvers.

5 Conclusions and Future Work

From the experimentation, we conclude that the translation of WPMS into
ILP has the best performance on crafted instances. This is a quite remarkable
result since branch and bound solvers, like akms ls, have always dominated
this category since 2006. The ILP translation is however not competitive on
industrial and random instances. This is something to be studied in depth, and
may constitute the seed for new hybrid approaches of ILP and other WPMS
algorithms.
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