
Landscape Connectivity: Synthetic Generator

1 Quick Start

This synthetic generator can be used to study landscape connectivity conser-
vation planning, considering both economic and ecological aspects, as well as
multiple species. The generator creates randomized problem instances that rep-
resent a landscape associated with land costs and several species. For each
species on the landscape, the generator creates a file describing the core habitat
areas and a file describing the species-specific resistance of each cell in the land-
scape. The generator release includes source code and a pre-packaged bench-
mark of 500 instances, and can be found at http://www.cis.cornell.edu/

ics/projects/index.php.

For any questions regarding on the generator, please contact Yexiang Xue at
yexiang@cs.cornell.edu, Bistra Dilkina at bistra@cs.cornell.edu or Carla Gomes
at gomes@cs.cornell.edu.

This generator was released as part of a dataset paper in the AAAI 2013 Comp-
Sust Track. Please acknowledge the following citation when using the generator
or the synthetic benchmark that comes with it:

Bistra Dilkina, Carla P. Gomes, Katherine Lai, Ronan Le Bras, Kevin S. McK-
elvey, Ashish Sabharwa, Michael K. Schwartz, Jordan Suter, Yexiang Xue.
(2013) Large Landscape Conservation — Synthetic and Real-world Datasets.
In AAAI.

This generator and in particular the benchmark that comes with it was used
in the following paper that contains benchmark results in the context of one
particular optimization setting, the Minimal Delay Generalized Steiner Network
Problem, capturing budget-constrained planning for robust connectivity:

Ronan LeBras, Bistra Dilkina, Yexiang Xue, Carla Gomes, Kevin S. McKelvey,
Michael K. Schwartz, Claire A. Montgomery (2013) Robust Network Design for
Multispecies Conservation. In AAAI.

This package contains a general description (this file); the source code of the
synthetic generator, makefile, and sample configuration files (in src/ folder) and
well as illustrative sample generated instances (in examples/ folder).

The output of the genartor is a set of ascii files descrbing the landscape in
ASCII grid format, which is file format designed to encode raster image data
files. The data is presented as a martix of numbers corresponding to each cell in
the raster, preceded by a preamble of 6 lines that specifies important metadata.
More details on this file format can be found at http://en.wikipedia.org/

wiki/Esri_grid. ASCII Grid format is an ascii format so it is both human
readable and hardware independent; it is widely supported and easy to import
and export from most GIS software.

We assume the landscape forms a N -by-N grid, also referrred to as a raster of
cells, in our artificial setting. One problem instance consists of the following
elements:

1

http://www.cis.cornell.edu/ics/projects/index.php
http://www.cis.cornell.edu/ics/projects/index.php
http://en.wikipedia.org/wiki/Esri_grid
http://en.wikipedia.org/wiki/Esri_grid

Landscape Connectivity: Synthetic Generator

• Cost Matrix. A N -by-N grid, where each cell contains the cost to pur-
chase the land in this cell. We assume land in core areas is free. The file
name is usually ** cost.asc and is in ASCII grid format.

• Resistance Matrix. A N -by-N grid, one matrix per species. The value
of each cell in this matrix represents the resistance of this cell of landscape
to the particular species. The file name is usually ** res ‘species no.’.asc
and is in ASCII grid format.

The simplest way to understand resistance values is to view them as the
cost for animals to migrate through a particular land patch or the difficulty
of movement through that patch. Often the connectivity that a path
between two locations provides is measured as the sum of the resistances
of the landscape cells on the path.

• Terminal Matrix. AN -by-N grid, one matrix per species. A cell marked
with 0, 1, 2, 3, . . . are core habitat areas for that species. −9999 is used to
mark non-core areas. The file name is usually ** term ‘species no.’.asc
and is in ASCII grid format.

• Terminal-Pair File. One file per species. The first line is n, the num-
ber of core area pairs with connectivity requirements we would like to
specify. It is followed by n lines, where each line contains two integers,
ai and bi, meaning we would like to ensure a connectivity requirement
between core area ai and bi for the particular species. The file name is
usually ** termpair ‘species no.’.txt. These files are optional. Different
studies using the synthetically generated landscapes can consider different
connectivity questions and requirements.

To use the synthetic generator, one needs to specify a configuration file first.
Here is the description of a configuration file.

FilePrefix (string) /* the prefix of the file name of the

* instance produced.

* ie, cost matrix file will be named as

* FilePrefix_{no.}_cost.asc

*/

STRUCTURED (string) /* either RANDOM or STRUCTURED.

* specifies the approach that applies.

* will be explained later.

*/

N (int) /* generate N-by-N matrices. */

S (int) /* split the matrix into S-by-S block

* matrices. It will be explained later.

*/

m (int) /* the number of cells each core

* area contains.

2

Landscape Connectivity: Synthetic Generator

*/

nSpecies (int) k (int)/* nSpecies is the number of different

* species and each species has

* 2*k core areas.

*/

nCopy (int) /* Create nCopy instances of this type. */

nExtra (int) /* Parameter needed ONLY when it is in

* STRUCTURED mode. Specifies the number

* of extra Gaussian functions for

* each species serving as ‘‘connectors’’.

* will be explained later. */

sigma_center (double)/* Parameter needed ONLY when it is in

* STRUCTURED mode.

* Specifies the width of the Gaussian

* functions. will be explained later.

*/

A configuration file can be used to create a benchmark of nCopy instances of
type either RANDOM or STRUCTURED for landscapes of size N-by-N grid,
for S different species with 2k core areas per species.

Sample configuration files are random input.txt and structured input.txt in src/
folder. After specifying the parameters, you can compile and run the synthetic
generator by

make

and

./synthetic_gen random_input.txt

inside src/ folder. You could find the results in examples/ folder. displayMa-
trix.py helps you visualize matrices. Its usage is

./displayMatrix.py asc_matrix_file_name

It requires python, scipy and numpy installed.

We will briefly discuss how STRUCTURED and RANDOM approaches work in
the following sections.

3

Landscape Connectivity: Synthetic Generator

2 Design Details

2.1 Generate Terminal Matrix

We start by splitting the NxN grid of cells into SxS grid of blocks (each block
is a bN/Sc-by-bN/Sc square). The outskirt blocks are defined as those in the
out-most laterals of the square. For each species i to generate the 2k core areas,
we pick outskirt blocks (x1, y1), (x2, y2), . . ., (x2k−1, y2k−1), (x2k, y2k).

The default Terminal-Pair File generated for each species has connectivity re-
quirements for k pairs of core areas. We enforce connectivity requirements
between the pairs of core areas (2t − 1, 2t) for all t = 1..k located in blocks
(x2t−1, y2t−1) and (x2t, y2t). In fact, for each t = 1..k, we randomly pick a block
(x2t−1, y2t−1) among upper outskirt blocks. Once it is picked, (x2t, y2t) is auto-
matically fixed at (S−x2t−1, S−y2t−1) in order to make their location of core ar-
eas 2t−1 and t as far as possible. The blocks (x1, y1), (x3, y3), . . . , (x2k−1, y2k−1)
are sampled multiple times until they do not overlap.

Finally, for each core area t = 1..2k within the chosen block (xt, yt), we grow
a blob of size m using breath-first search to select that actual grid cells in the
NxN matrix that belong to the core area.

N , S, k and m are specified in the configuration file.

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 1: Terminal Matrices for N = 30, S = 6, k = 1,m = 14. Dark red
squares are part of the terminals. (Left) Species 0 (Right) Species 1

2.2 Generate Resistance Matrix

2.2.1 Totally Randomized Approach

This approach is called when specifying RANDOM in configuration file. In this
case, a matrix of size N -by-N is generated for each species, where each cell

4

Landscape Connectivity: Synthetic Generator

is a uniformly distributed random number between [0, ResistanceRange − 1]
representing the resistance value of the landscape. ResistanceRange = 2000 in
the code (but can easily be changed).

2.2.2 Structured Approach

This approach is called when specifying STRUCTURED in configuration file.
In this approach, resistance matrices are created as a mixture of 2-dimensional
Gaussian functions. A 2-dimensional Gaussian function g(x, y) is characterized
by a 5-tuple, (µx, µy, σx, σy, ρ) and is computed as:

g(x, y) =
1

2πσxσy
√

1− ρ2
exp{− 1

2(1− ρ2)

(
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2
ρ(x− µx)(y − µy)

σxσy

)
}

Below we will report our choice of these five parameters without referring to the
function form again. A negative Gaussian function is simply g′(x, y) = −g(x, y)
where g(x, y) is a Gaussian function. In our case, x and y will be the row and
column coordinates of each grid cell within the NxN matrix.

First, we assume low resistance values within core areas. Therefore, for each
species i = 1, 2, . . . , nSpecies and core area t = 1, 2, . . . , 2k (k is the number
of pairs of core areas), we put a negative Gaussian function −Gt

i with a mean
vector (µx, µy) corresponding to the coordinates of the matrix cell at the center
of the core area, with σx = σy = σcenter and ρ = 0 for each core area.

After that, for each species we put another nExtra negative Gaussian functions
with mean vectors randomly sampled from non-outskirt blocks, and with σx and
σy randomly chosen in the interval [σcenter, 1.5σcenter]; ρ randomly chosen in the

interval [−0.8, 0.8]. We call these functions −Ĝt
i, where i = 1, 2, . . . , nSpecies

and t = 1, 2, . . . , nExtra. These functions are used to create “low resistance”
areas outside core areas to allow animals to migrate between habitats. nExtra
and σcenter are parameters specified in the configuration file.

For each species i we compute a Gaussian mixture Gi, where Ĝt
i are combined

with Gt
i with halved intensity, and the value of each cell is further perturbed

with uniformly distributed white noise at the intensity of 1
10 of Gt

i. In summary,
the combined matrix for species i is given by:

Gi(x, y) = −
2k∑
t=1

Gt
i(x, y)

max(Gt
i)
− 1

2

nExtra∑
t=1

Ĝt
i(x, y)

max(Ĝt
i)
− 1

10
U(0, 1)

where max(Gt
i) is the maximal value of Gt

i across all (x, y) cells (Similarly for

max(Ĝt
i).) . This normalization serves to make each component of the sum

have value at most 1. U(0, 1) is a uniformly distributed random variable within
[0, 1).

5

Landscape Connectivity: Synthetic Generator

Finally, Gi is normalized to guarantee the values are in the range [1, ResistanceRange]
(ResistanceRange = 2000) to form the resistance matrix Ri for species i:

Ri(x, y) =

 ResistanceRange− 1 Gi(x, y) = 0
b(1−Gi(x, y)) ∗ResistanceRangec −1 < Gi(x, y) < 0
0 Gi(x, y) ≤ −1

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 2: STRUCTURED Resistance Matrices: Blue is low resistance, red is
high resistance. The figure illustrates how the areas corresponding to core ar-
eas from Fig.1 here have low resistance. The additional low resistance areas
correspond to two extra randomly placed Gaussian functions for each species.
nExtra = 2, σcenter = 3. (Left) Species 0 (Right) Species 1.

2.3 Generate Cost Matrix

2.3.1 Totally Randomized Approach

This approach is called when specifying RANDOM in configuration file. In this
case, a matrix of size N -by-N is generated per problem instance, where each cell
is a uniformly distributed random number between [0, CostRange−1]. We also
force the cost of the land at core areas to be free. The cost range CostRange is
set to 2000 in the code (but can easily be changed).

2.3.2 Structured Approach

This approach is called when specifying STRUCTURED in configuration file.
The way structured costs are computed is motivated by the fact that costs of
landscapes are usually correlated with their resistance value. High resistance
landscapes often correspond to urbanized areas with high land cost, while very
low resistance areas are usually undeveloped, conserved or rural areas of low
land cost value.

6

Landscape Connectivity: Synthetic Generator

The cost value of cell (x, y) is computed based on the minimal resistance value
among the reistsance matrices for all speciesR1(x, y), R2(x, y), . . . , RnSpecies(x, y),
plus uniformly distributed white noise (similarly to the resistance generation).
In addition, we also force the cost of the land inside core areas to be free (as-
suming the core areas are already under conservation). The cost is computed
based on:

C ′(x, y) =

{
0 (x, y) is in any core area

MinnSpecies
i=1

Ri(x,y)
ResistanceRange + 1

10 ∗ U(0, 1) otherwise

C ′ is normalized to guarantee the values are in the range [0, CostRange− 1]:

C(x, y) = b C
′(x, y)

max(C ′)
∗ CostRangec

Currently, CostRange is 2000 in the code (but can easily be changed).

0 5 10 15 20 25

0

5

10

15

20

25

Figure 3: STRUCTURED Cost Matrix: Blue is low cost, red is high cost. In
this example of a structured instance, cost is strongly correlated with landscape
resistance for the 2 species from Fig.2.

3 An Example

We give a concrete example on how to generate a structured instance in this
section. Firstly, we start by specifying the configuration file as shown below
(src/structured input.txt).

struct

STRUCTURED

30 6

7

Landscape Connectivity: Synthetic Generator

14

2 1

5

2

3

It tells the generator that the file names should start with “struct*”. We
want STRUCTURED instance. The file specifies that N=30, S=6, m=14,
nSpecies=2, k=1, nCopy=5, nExtra=2, and σcenter = 3. The instance should
be a 30-by-30 matrix, divided into 6-by-6 block matrix (each block consists of
5x5 cells). Each core area contains 15 grid cells. We want 2 species, each species
has 1 pair of core areas. We want 5 instances of this type. The last two pa-
rameters are used when generating structured instances specifying nExtra and
σcenter needed for the resistance generation.

After we execute the generator, for benchmark instance 0 we get files , among
which struct 0 cost.asc is the cost matrix; struct 0 res 0.asc and struct 0 res 1.asc
are resistance matrices for species 0 and 1, respectively; struct 0 term 0.asc and
struct 0 term 1.asc are terminal matrices for the two species; and struct 0 termpair 0.txt
and struct 0 termpair 1.txt are terminal pair files for the two species. Similar
files are generated for the other 4 instances in the benchmark.

Using displayMatrix.py, we can display the generated .asc files. Terminal ma-
trices and Resistance matrices are displayed in Figure 1 and Figure 2. Cost
matrix is shown in Figure 3. One can notice that it is correlated with resistance
matrices; however with some random perturbations. If you run the generator
with the same configuration set, you might not get the exact same output as
displayed in the figures, due to the randomness.

8

	Quick Start
	Design Details
	Generate Terminal Matrix
	Generate Resistance Matrix
	Totally Randomized Approach
	Structured Approach

	Generate Cost Matrix
	Totally Randomized Approach
	Structured Approach

	An Example

